Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 16 (2009) 221-231 Copyright ©2009 Watam Press

http://www.watam.org

OSCILLATION OF SECOND ORDER NONLINEAR IMPULSIVE DELAY DIFFERENTIAL EQUATIONS

F. S. Saryal¹ and A. Zafer²

 $^1 \rm Joseph$ L. Rotman School of Management, Finance Department University of Toronto 105 St. George Street, Toronto, Ontario, Canada M5S 3E6

²Department of Mathematics Middle East Technical University, 06531 Ankara, Turkey

Abstract. Sufficient conditions are obtained for oscillation of solutions to impulsive delay differential equations of the form

 $\begin{aligned} &[r(t)x'(t)]' + a(t)f(x(\tau(t))) = 0, \quad t \neq \theta_k, \\ &\Delta[r(t)x'(t)]|_{t=\theta_k} + b_k h(x(\tau(\theta_k))) = 0, \quad (t \in \mathbb{R}_+, \ k \in \mathbb{N}), \end{aligned}$

which include superlinear and sublinear equations as special cases. It is shown that the impulsive perturbations greatly affect the oscillation behavior of the solutions.

Keywords. Oscillation, second order, nonlinear, delay, impulsive, differential equation. **AMS (MOS) subject classification:** 34K15, 34C10.

1 Introduction

We are concerned with the oscillation of solutions of impulsive delay differential equations of the form

$$[r(t)x'(t)]' + a(t)f(x(\tau(t))) = 0, \quad t \neq \theta_k,$$

$$\Delta[r(t)x'(t)]|_{t=\theta_k} + b_k h(x(\tau(\theta_k))) = 0, \quad (t \in \mathbb{R}_+, \ k \in \mathbb{N}),$$
(1)

where $\mathbb{R}_+ = (0, \infty)$, $\mathbb{N} = \{1, 2, \ldots\}$, and $\Delta[z(t)]|_{t=\theta} := z(\theta^+) - z(\theta^-)$ in which $z(\theta^{\mp}) := \lim_{t \to \theta^{\mp}} z(t)$. For convenience we define $z(\theta) := z(\theta^-)$.

The following conditions are assumed to hold without further mention:

- (a) $r \in C^1(\mathbb{R}_+), r(t) > 0; a \in C(\mathbb{R}_+) a(t) \ge 0;$
- (b) $\tau \in C^1(\mathbb{R}_+), \tau(t) \leq t, \tau'(t) \geq 0, \lim_{t \to \infty} \tau(t) = \infty;$
- (c) $f \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\}); h \in C(\mathbb{R})$
- (d) $\{\theta_k\}$ is a fixed strictly increasing unbounded sequence of positive real numbers; $\{b_k\}$ is a sequence of positive real numbers;
- (e) xf(x) > 0, $f'(x) \ge 0$, and xh(x) > 0 for $x \ne 0$;