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Abstract. This paper considers initial value problems on time scales and also discusses

inequalities on time scales. Theorem 3 presents an existence result for linear dynamic prob-

lems on time scales and we give sufficient conditions for such a problem to have a unique

solution. To achieve this we apply a Banach fixed point theorem with a corresponding

weighted norm (Bielecki norm).
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1 Introduction

Throughout this paper, we denote by T any time scale (nonempty closed
subset of the real numbers IR). By J = [0, T ], we denote a subset of T such
that [0, T ] = {t ∈ T : 0 ≤ t ≤ T}. Let C(J, IR) denote the set of continuous
functions u : J → IR.

In this paper, we investigate the following first order integro–differential
equation of Volterra type on time scales

{
x4(t) = f

(
t, x(t),

∫ t

0
k(t, s)x(s)4s

)
≡ (Fx)(t), t ∈ J,

x(0) = x0 ∈ IR,
(1)

where f ∈ C(J × IR× IR, IR), k ∈ C(J × J, IR).

Problem (1) was discussed in [7]. The results in our paper improve the
corresponding results of [7]. Our first result is a dynamic inequality which
we need to show the main result in Section 5. In Theorem 3 we formulate
sufficient conditions so that a linear dynamic equation has a unique solution.
To obtain such a result we use the Banach fixed point theorem with a cor-
responding weighted norm. Theorem 4 discusses the existence of extremal
solutions of problem (1).


