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Abstract. We investigate the existence of multiple positive periodic solutions for a class

of second order impulsive functional differential equations. We use fixed-point theory and

present two examples to demonstrate the applicability of the main theoretical results.

Keywords. Functional differential equations, impulsive differential equations, periodic

boundary value problem, multiple solutions, cone.

AMS (MOS) subject classification: 34B37, 34K45.

1 Introduction

The mathematical modelling of processes with abrupt changes leads impul-
sive differential equations [8, 15, 33, 38]. This kind of equations also occurs in
many applications such as physics, chemical technology, population dynam-
ics, biological systems, economics, and vaccination strategies [1, 6, 7, 10, 18,
34, 35, 37, 39-41]. Now there has been a significant development in impulsive
theory, see, for example [9, 16, 21-22,25-27, 31, 32] and references therein.

It should be noted that there are also many papers [2-5, 13, 14, 17, 19,
24, 28, 29, 30, 36] concerned with the solvability of periodic boundary value
problems (PBVP, for short) for first or second order functional differential
equations in recent years. Some of them even considered PBVP for sec-
ond order functional differential equation with impulse (see, [2, 3, 20]). For
example, in [2], W. Ding and M. Han investigated the following problem





−y′′(t) = f(t, y(t), y(w(t)), t 6= tk, t ∈ [0, T ];
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= I∗k(y(tk)), k = 1, 2, . . . p;
y(0) = y(T ), y′(0) = y′(T ),
y(t) = y(0), t ∈ [−r, 0).


