Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 16 (2009) 619-629 Copyright ©2009 Watam Press

http://www.watam.org

DELAY-DEPENDENT EXPONENTIAL STABILITY OF UNCERTAIN STOCHASTIC SYSTEMS WITH DISCRETE AND DISTRIBUTED DELAYS

Wenhua Gao^{1,2} and Feiqi Deng¹

¹College of Automation Science and Engineering South China University of Technology Guangzhou, Guangdong, 510640, P.R. China

²Department of Mathematics, College of Science South China University of Technology Guangzhou, Guangdong, 510640, P.R. China

Abstract. In this paper, the problem of exponential stability in mean square for uncertain stochastic systems with discrete and distributed delays is investigated. A delay-dependent sufficient conditions for robust stability is formulated in terms of linear matrix inequalities (LMIs) by using a combination of integral inequality technique and descriptor model transformation approach. A numerical example is given to indicate the effectiveness of the developed techniques.

Keywords. stochastic systems; distributed delay; discrete delay; exponential stability; linear matrix inequality(LMIs)

AMS subject classification:T93E15,34K50,34K20

1 Introduction

The stability analysis of time-delay systems can be divided into two categories, that is, delay-independent stability criteria and delay-dependent stability criteria. Delay-dependent stability conditions are less conservative than delay-independent stability conditions for small delays [1-4]. The delaydependent robust stability and control problems of time-delay systems have attracted lots of attentions over decades. Delay-dependent stability conditions via Lyapunov functionals are often based on a fixed model transformation technique[1]. The descriptor system transformation method is first introduced in [2]. The model transformation methods are classified into four basic types in [3], and among these methods the descriptor system transformation method is the least conservative one[3]. It is well known that stochastic perturbations are unavoidable in many practical systems, the research on stochastic systems becomes more and more important. On the other hand, distributed-delay are often encountered in various practical systems[12][13]. The descriptor system approach has been extended to the uncertain stochastic systems with multiple discrete delays in [4]. However, the