Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 17 (2010) 107-114 Copyright ©2010 Watam Press

http://www.watam.org

A DISCRETE-TIME LYAPUNOV THEOREM FOR THE EXPONENTIAL INSTABILITY OF C_0 -SEMIGROUPS

Ciprian Preda

Department of Mathematics University of California, Los Angeles, CA 90095, U.S.A e-mail:preda@math.ucla.edu

Abstract. A discrete-time Lyapunov approach is proposed to study the exponential instability of C_0 -semigroups. Also, some continuous-time Lyapunov conditions are established.

Keywords. Abstract Cauchy problem, one-parameter semigroup, exponential instability, Datko's theorem, Lyapunov operator equation.

AMS (MOS) 2000 subject classification: 47D06, 34D05

1 Introduction

Let X be a Hilbert space and B(X) the Banach algebra of all bounded linear operators acting on X. Consider the Abstract Cauchy Problem

$$\frac{du(t,x)}{dt} = Au(t,x), \ u(0,x) = x \in X, \ t \ge 0 \ (ACP)$$

with a closed densely defined (possible unbounded) linear operator A.

Assume for a moment that (ACP) is well-posed; that is A generates a C_0 -semigroup $\mathbf{T} = T(t)_{t\geq 0}$ on X. We recall that a B(X)-valued function $\mathbf{T} = \{T(t)\}_{t\geq 0}$ is named a semigroup of linear operators if the identity on X can be obtained as T(0) and the semigroup property T(t+s) = T(t)T(s) is also satisfied for all $t, s \geq 0$. If in addition \mathbf{T} is strongly continuous (i.e. there exists $\lim_{t\to 0_+} T(t)x = x$, for all $x \in X$) then we will call \mathbf{T} as a C_0 -semigroup.

It is widely known that each C_0 -semigroup is exponentially bounded i.e.

$$||T(t)|| \le M e^{\omega t}$$
, for all $t \ge 0$

for some $M, \omega > 0$ (see for instance [6, 11]). Also we will denote by

$$D(A) = \left\{ x \in X: \text{ there exists } \lim_{t \to 0+} \frac{T(t)x - x}{t} \right\}, \ Ax = \lim_{t \to 0+} \frac{T(t)x - x}{t}.$$

The operator A is called the infinitesimal generator of \mathbf{T} and is proved to be closed and densely defined. Also it is known that if $x \in D(A)$ then $T(\cdot)x$ is continuously differentiable with