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Abstract. We establish an iterative scheme by means of Mann’s method and Moudafi’s

method to find a common element of the set of solutions of an equilibrium problem and the

set of fixed points of a nonexpansive mapping in a Hilbert space. We prove a convergence

theorem of our iteration under the weaker assumption as were the case in Takahashi and

Takahashi’s recent results. The new iteration considered in the paper is applied to find

a common element of the set of fixed points of a nonexpansive mapping and the set of

solutions of a variational inequality problem for continuous monotone mappings. Conse-

quently, the corresponding results for α-inverse-strongly monotone mappings, r-strongly

monotone mappings and relaxed (γ, r)-cocoercive mappings are obtained respectively. We

also propose a slightly modified Mann-type iteration to obtain a strong convergence theo-

rem for continuous pseudocontractive mappings.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H. Let F be a bifunction of C×C into R, where R is the set of real numbers.
The equilibrium problem for F : C × C → R is to find x ∈ C such that

F (x, y) ≥ 0 for all y ∈ C. (1)

The set of solutions of (1) is denoted by EP(F ). Given a mapping T : C → H,
let F (x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then, z ∈ EP(F ) if and only if
〈Tz, y− z〉 ≥ 0 for all y ∈ C, i.e., z is a solution of the variational inequality.
Numerous problems in physics, optimization, and economics reduce to find a
solution of (1). Some methods have been proposed to solve the equilibrium
problem (see [1, 5, 13]). In 2005, Combettes and Hirstoaga [4] introduced an
iterative scheme of finding the best approximation to the initial data when
EP(F ) is nonempty and they also proved a strong convergence theorem.


