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Abstract. Based on the generalized firm nonexpansiveness of the resolvent operator, the

convergence analysis of the Eckstein-Bertsekas proximal point algorithm in the context of

approximating the solution of a class of nonlinear inclusion problems is given. Several new

results on the generalized firm nonexpansiveness of the resolvent operator are also estab-

lished. The obtained results are general in nature, and can be applied to the generalized

Douglas-Rachford splitting method.
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1 Introduction

We consider the problem of determining a solution to the inclusion

0 ∈ M(x), (1)

where X is a real Hilbert space with the norm ‖.‖ and the inner product
〈., .〉, and M : X → 2X is a set-valued mapping on X.

Rockafellar [22] generalized the algorithm of Martinet [13] for convex pro-
gramming, which is referred to as the proximal point algorithm in literature.
Then Rockafellar [23] examined its general convergence and rate of conver-
gence analysis in the context of solving (1) with M monotone, and has further
established that when M is maximal monotone, the sequence {xk} generated
for an initial point x0 by

xk+1 ≈ Pk(xk), (2)

converges weakly to a solution to (1), provided the approximation is made
sufficiently accurate as the iteration proceeds, where Pk = (I + ckM)−1 for
a sequence {ck} of positive real numbers that are bounded away from zero.
It follows from (2) that xk+1 is an approximate solution to the inclusion

0 ∈ M(x) + c−1
k (x− xk). (3)

The general theory of multivalued maximal monotone mappings provides
a general framework to studying convex programming and variational in-
equality problems based on algorithms such as the generalized alternating


