http://www.watam.org

A NEW PROOF OF A THEOREM OF DATKO AND PAZY

Ciprian Preda and Petre Preda

West University of Timişoara, Bd. V. Parvan, no. 4, Timişoara 300223, Romania Corresponding author email: ciprian.preda@feaa.uvt.ro

Abstract. We give a very short proof for the well-known theorem of Datko and Pazy regarding the uniform exponential stability of abstract evolution families on half-line. Some other characterizations for the uniform exponential stability (and instability) of the evolution families are obtained.

 ${\bf Keywords.}\ {\rm evolution}\ {\rm families},\ {\rm uniform}\ {\rm exponential}\ {\rm stability},\ {\rm Datko-Pazy}\ {\rm theorem}.$

AMS (MOS) subject classification: 34D05, 47D06.

1 Introduction and Preliminaries

Let X be a real or complex Banach space and B(X) the Banach algebra of all linear and bounded operators acting on X. We denote by $|| \cdot ||$ the norms of vectors and operators on X. We recall that a homomorphism $t \mapsto T(t)$, from $(\mathbb{R}_+, +)$ into $(B(X), \cdot)$, is called a (one-parameter) semigroup of linear and bounded operators on X. If in addition $T(\cdot)$ is strongly continuous (i.e. there exists $\lim_{t\to 0_+} T(t)x = x$, for all $x \in X$) then $\{T(t)\}_{t\geq 0}$ is said to be a C_0 -semigroup (for a general presentation of the theory of C_0 -semigroups we refer the reader to [1]).

One of the most remarkable results concerning the (exponential) stability of a C_0 -semigroup $\{T(t)\}_{t\geq 0}$ has been obtained in 1970 by R. Datko [2] and it says that all the trajectories $t \mapsto T(t)x$ have an exponential decay as $t \to \infty$ (i.e. $\{T(t)\}_{t\geq 0}$ is exponentially stable) if and only if, for each vector $x \in X$, the function $t \to ||T(t)x||$ lies in $L^2(\mathbb{R}_+)$. Later, A. Pazy [7] shows that the result remains valid if we replace $L^2(\mathbb{R}_+)$ with $L^p(\mathbb{R}_+)$, where $p \in [1, \infty)$.

In 1972, R.Datko [3] extends the result above for abstract linear evolution families (see definition bellow) stating that an evolution family $\{U(t,s)\}_{t\geq s\geq 0}$ (with exponential growth) is uniformly exponentially stable (i.e. there are $N, \nu > 0$ such that $||U(t,t_0)|| \leq Ne^{-\nu(t-t_0)}$, for all $t \geq t_0 \geq 0$) if and only if there exists $p \in [1,\infty)$ such that $\sup_{s\geq 0} \int_{s}^{\infty} ||U(t,s)x||^p dt < \infty$, for each $x \in X$. For proving this fact, Datko establishes firstly the equivalence between uniform exponential stability and uniform asymptotic stability (i.e.