Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 17 (2010) 449-456 Copyright ©2010 Watam Press

http://www.watam.org

PERMANENCE AND EXTINCTION IN A NONAUTONOMOUS T-PERIODIC COMPETITIVE LOTKA-VOLTERRA SYSTEM¹

Jiandong Zhao^{1,2}, Liping Fu³, Rongfu Cheng⁴, and Jiong Ruan²

¹School of Mathematics and Information Ludong University, Yantai, Shandong 264025, P.R. China Corresponding author, email: jdzhao@ustc.edu

²School of Mathematical Sciences Fudan University, Shanghai 200433, P.R. China

³Library Ludong University, Yantai, Shandong 264025, P.R. China ⁴College of Mathematics Beihua University, Jilin, Jilin 132013, P.R. China

Abstract. A nonautonomous T-periodic competitive Lotka-Volterra system is considered in this paper. For $r \leq n$, sufficient conditions on the coefficients are provided to guarantee that r of the species in the system are permanent while the remaining n - r are driven to extinction. It is shown that this result is an improvement of that in Ahmad and Montes de Oca [Appl. Math. Comput. **90**, (1998) 155-166].

Keywords. Lotka-Volterra system; Permanence; Extinction; Attractivity; Periodic solution.

AMS (MOS) subject classification: Primary 34C05, 34D05; Secondary 92D25.

1 Introduction

We consider a nonautonomous Lotka-Volterra system of differential equations

$$\dot{x}_i(t) = x_i(t) \left[b_i(t) - \sum_{j=1}^n a_{ij}(t) x_j(t) \right], \quad i = 1, \cdots, n, \quad n \ge 2, \quad (1)$$

where $x_i(t)$ represents the population size of the *i*th species at time t, $b_i(t)$, $i = 1, \dots, n$, and $a_{ij}(t)$, $i, j = 1, \dots, n$, are continuous and T-periodic, $a_{ii}(t) > 0$, $i = 1, \dots, n$, and $a_{ij}(t) \ge 0$, $i \ne j$, $i, j = 1, \dots, n$, for $t \in (-\infty, +\infty)$, $\dot{x}_i(t) = \frac{d}{dt}x_i(t)$. Assume

$$\bar{b}_i = \frac{1}{T} \int_0^T b_i(s) ds > 0, \quad i = 1, \cdots, n.$$
 (2)

 $^1\mathrm{SUPPORTED}$ BY PROGRAM FOR INNOVATIVE RESEARCH TEAM IN LUDONG UNIVERSITY(08-CXB005).