OSCILLATION CRITERIA FOR CERTAIN FORCED FIRST ORDER DIFFERENCE EQUATIONS WITH MIXED NONLINEARITIES¹

Hongmei Han¹ and Zhaowen Zheng²

¹Editorial Office, Magazine of Middle School Mathematics ²School of Mathematical Sciences, Qufu Normal University Qufu 273165, Shandong, P. R. China E-mail: zhwzheng@126.com

Abstract. New oscillation criteria are established for first order forced difference equations with mixed nonlinearities, which generalize and improve some recent results in literature. **Keywords.** Oscillation, difference equation, first order, forcing term, mixed nonlinearity. **AMS (MOS) subject classification:** 39A10, 34A30.

1 Introduction

In this paper, we consider the first order forced difference equation with mixed nonlinearities of type

$$\Delta x(n) - p(n)x(n+1) + \sum_{i=1}^{m} q_i(n)x^{\lambda_i}(n+1) = e(n),$$
 (1)

where $\{p(n)\}, \{e(n)\}$ and $\{q_i(n)\}$ $(1 \le i \le m)$ are sequences of real numbers, and λ_i $(1 \le i \le m)$ are ratios of odd positive integers with $\lambda_1 > \cdots > \lambda_l > 1 > \lambda_{l+1} > \cdots > \lambda_m$.

By a solution of Equation (1) we mean a sequence $\{x(n)\}$ which is defined for $n \geq n_0 \in \mathbb{N}_0 = \{0, 1, 2, \cdots\}$ and satisfies Equation (1). Such a solution is said to be oscillatory if for every $n_1 \geq N_0$, there exists $n \geq n_1$ such that $x(n)x(n+1) \leq 0$; otherwise, it is called nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Numerous oscillation criteria for Equation (1) and various special cases have been obtained recently (see [1-5] and references cited therein). When p(n) = e(n) = 0, and there is only one nonlinear term in Equation (1), well known conditions for Equation (1) to be oscillatory are

$$\sum_{n=0}^{\infty} q_1(n) = \infty \text{ for } \lambda < 1, \text{ and } \sum_{n=0}^{\infty} q_1(n) = -\infty \text{ for } \lambda > 1.$$
 (2)

¹This research was partially supported by the NSF of China under Grant 10771118 and 10801089.