Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 17 (2010) 475-486 Copyright ©2010 Watam Press

http://www.watam.org

EXISTENCE OF MULTIPLE HOMOCLINIC SOLUTIONS FOR A NONLINEAR ELLIPTIC **BOUNDARY VALUE PROBLEM**

Toshiro Amaishi

Yokohama National University Hodogayaku, Tokiwadai, Yokohama, Japan

email:toshi@hiranolab.jks.ynu.ac.jp

Abstract. Let $N \geq 2$ and $\mathcal{D} \subset \mathbb{R}^{N-1}$ be a bounded domain with a smooth boundary $\partial \mathcal{D}$. In this paper, we consider the existence of homoclinic solutions for nonlinear elliptic problem

 $\begin{cases} \Delta u + g(x,u) = 0 & \text{ in } \mathbb{R} \times \mathcal{D} \\ \frac{\partial u}{\partial \nu} = 0 & \text{ on } \partial(\mathbb{R} \times \mathcal{D}), \end{cases}$ where $g \in C^1((\mathbb{R} \times \overline{\mathcal{D}}) \times \mathbb{R}, \mathbb{R})$ and ν denotes the outward pointing normal derivative to the boundary $\partial(\mathbb{R} \times \mathcal{D})$ of $\mathbb{R} \times \mathcal{D}$.

Keywords. Homoclinic solution, nonlinear elliptic problem, variational method, mountain pass critical point, parabolic flow.

Introduction 1

Let $N \geq 2$ and $\Omega \subset \mathbb{R}^N$ be a cylindrical domain, i.e., $\Omega = \mathbb{R} \times \mathcal{D}$, where $\mathcal{D} \subset \mathbb{R}^{N-1}$ is a bounded domain with a smooth boundary $\partial \mathcal{D}$. In the present paper, we consider the existence of homoclinic solutions of boundary value problem

$$\begin{cases} \Delta u + g(x, u) = 0 & \text{in } \Omega\\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega \end{cases}$$
(P)

where $q \in C^1(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ and ν denotes the outward pointing normal derivative to $\partial(\mathbb{R} \times \mathcal{D})$. For $x \in \Omega$, we set $x = (x_1, y)$, where $x_1 \in \mathbb{R}$ and $y \in \mathcal{D}$. We impose the following conditions on g:

 $g(x,z) \in C^1(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ and is 1-periodic with respect to x_1 ; (g1)

 $G(x,z) = \int_0^z g(x,\tau) d\tau$ is 1-periodic with respect to z. (g2)

In [3], Rabinowitz considered the existence of spacially heteroclinic solutions of problem (P) under the assumption (g1), (g2) and an additional condition