Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 17 (2010) 543-553 Copyright ©2010 Watam Press

http://www.watam.org

A Characterization of Compact Sets in \mathbb{R}^n and its Application to a Geometric Inequality 0

Y.D. Chai¹ and Goansu Kim^2

¹Department of Mathematics Sung Kyun Kwan University, Suwon, 440-746, South Korea ydchai@skku.edu

²Department of Mathematics Yeungnam University, Kyongsan, 712-749, South Korea gskim@yu.ac.kr

Abstract. In this paper, we show that curvature conditions on a manifold control the topology of plane sections of the manifolds and then characterize compact *n*-manifold with C^2 -boundary in terms of the topology of plane sections. We make use of the characterization to obtain a new lower bound for the integral of mean curvature for a certain kind of compact *n*-manifolds with C^2 -boundary in R^n .

Keywords. height function, Morse theory, positive type or negative critical point, double, kinematic density, quasi-convex hull.

AMS (MOS) subject classification: 52A07, 52A22, 53C20.

1 Introduction

Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface of (n+1)-dimensional Euclidean spaces. In a neighborhood of any point p of M there is a unit normal vector field $\nu : M \to S^n \subset \mathbb{R}^{n+1}$, unique up to sign, and hence a second fundamental form $H : T_pM \times T_pM \to R$ (which is defined up to sign). We also have the map $d\nu : T_pM \to T_pM$ with

$$II(X_p, Y_p) = \langle -d\nu(X_p), Y_p \rangle$$

= $- \langle \nabla_{X_p} \nu, Y_p \rangle$
= $\langle \nabla_{X_p} \gamma, \nu(p) \rangle$.

But $\langle \nabla_{X_p} Y, \nu(p) \rangle = \langle S(X_p, Y_p), \nu(p) \rangle$, where $S(X_p, Y_p) = \perp (\nabla_{X_p} Y)$. Thus $-d\nu : T_p M \to T_p M$ is a symmetric linear transformation. We define principal curvatures at p to be the eigenvalues corresponding to the unit eigenvectors for $-d\nu$. It is obvious that all the principal curvatures at any point on the compact convex C^2 -boundary are nonnegative.

The well-known characterization of compact convex set by G. Aumann

 $^{^0\}mathrm{This}$ research was partially supported by KOSEF R01-2004-000-10183-0 (2006). G. Kim is the corresponding author.