Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 17 (2010) 555-571 Copyright ©2010 Watam Press

http://www.watam.org

L^p-SOLUTIONS OF RICCATI-TYPE DIFFERENTIAL EQUATIONS AND ASYMPTOTICS OF THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS

Pablo Figueroa¹ and Manuel Pinto²

¹Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile

²Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile Corresponding author e-mail: pfigueroa@dim.uchile.cl

Abstract. We prove the existence of L^p -solutions for a second order nonlinear Riccati-type scalar differential equation. This is applied to a perturbed third order linear differential equation with L^p -perturbations for some $p \ge 1$. In this way, we know the asymptotic behavior of a solution y and its derivatives showing error bounds. Furthermore, we obtain an asymptotic expansion in terms of $L^{p/i}$ functions $(1 \le i \le [p], [p])$ is the integer part of p), giving estimates for the error functions. The usefulness of these scalar results is shown studying the asymptotic behavior of a linear equation with unbounded coefficients. The asymptotic formulae obtained are simpler and more explicit than those obtained by 3×3 first order systems.

Keywords. Riccati type equation, Perturbed third order linear differential equation, Asymptotic formula, L^p -Perturbations, Error bounds.

AMS (MOS) subject classification: 34E10, 34E05.

1 Introduction

For the last decades, higher order differential equations have been intensively and extensively studied for representing a diversity of models in real world. The most of the applications arise from theoretical physics, population dynamics, biology, ecology, etc., see for example [7, 15, 16, 17, 18, 19, 22].

Particularly interesting are the differential equations with unbounded coefficients (see for example [1, 2, 3, 4, 7, 21, 22, 26])

$$y''' + qy' + ry = 0. (1.1)$$

If either r or q is dominant, then equation (1.1) can be transformed in an almost constant third order differential equation [4, 18, 19, 21]

$$y''' + (a_2 + r_2(t))y'' + (a_1 + r_1(t))y' + (a_0 + r_0(t))y = 0.$$
(1.2)