Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 18 (2011) 1-15 Copyright ©2011 Watam Press

http://www.watam.org

AN EQUIVALENT PROBLEM APPROACH TO ABSOLUTE EXTREMA FOR CALCULUS OF VARIATIONS PROBLEMS WITH DIFFERENTIAL CONSTRAINTS

D.A. Carlson^{1*} and G. Leitmann²

¹ Associate editor, American Mathematical Society Mathematical Reviews, 416 Fourth Street Ann Arbor, MI 48103, U.S.A., email: dac@ams.org, fax: 734.996.2916, phone:

734.995.3885

 2 Professor in the Graduate School, University of California at Berkeley

Berkeley, California 94720, U.S.A.

Abstract. We consider problems in the calculus of variations of the form

minimize
$$\mathcal{J}(x(\cdot)) = \int_{a}^{b} L(t, x(t), \dot{x}(t)) dt$$

over the class of all absolutely continuous functions satisfying the constraint

 $g(t, x(t), \dot{x}(t)) = 0$, for almost all $t \in [a, b]$,

and the end conditions

$$x(a) = x_a$$
 and $x(b) = x_b$,

where $(L, g)(\cdot, \cdot, \cdot) : [a, b] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}^m$ are continuous functions with $g(t, x, p) \ge 0$ (componentwise) for all $(t, x, p) \in [a, b] \times \mathbb{R}^n \times \mathbb{R}^n$ and m < n. Our approach to solving such problems is to combine a penalization method with Leitmann's direct sufficiency method. More specifically we consider the family of unconstrained problems (\mathcal{P}_{λ}) of minimizing

$$\mathcal{J}_{\lambda}(x(\cdot)) \doteq \int_{a}^{b} L(t, x(t), \dot{x}(t)) + \lambda^{\mathsf{T}} g(t, x(t), \dot{x}(t)) dt$$
(1)

over all piecewise smooth functions $x(\cdot)$ satisfying (3). The parameter $\lambda \in \mathbb{R}^m$ is assumed to be a constant vector whose components are all the same positive constant. Our goal is to apply Leitmann's direct method to the penalized problem with sufficiently large λ . An example will be presented to illustrate our technique.

Keywords.calculus of variations, differential side conditions, sufficient conditions.

Mathematics Subject Classification (2000):49K05, 49K15.

1 Introduction

Recently, the authors have been investigating a direct sufficiency method for solving free problems in the calculus of variations. This approach involves

^{*} Corresponding author: dac@ams.org