Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 311-317 Copyright ©2011 Watam Press

http://www.watam.org

A BOUNDED HURWITZ VECTOR FIELD IN \mathbb{R}^4 HAVING A PERIODIC ORBIT

Víctor Guíñez and Álvaro Castañeda

Departamento de Matemática y C.C. Universidad de Santiago de Chile Casilla 307, Correo 2, Santiago, Chile Corresponding author email:victor.guinez@usach.cl

Abstract. We modify the Bernat–Llibre Counterexample in order to obtain a smooth bounded vector field which satisfies the Markus–Yamabe hypotheses and has a periodic orbit.

Keywords. Global attractor; Markus–Yamabe Conjecture.

AMS (MOS) subject classification: 37C10, 37C70, 37C75.

1 Introduction

Let $X: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 -vector field. Consider the differential system

$$\dot{x} = X(x) \,. \tag{1}$$

Let p be a singular point of X, that is, X(p) = 0. We say that p is a global attractor of the differential system (1) (or the vector field X) if $\phi(t, x)$ is defined for all t > 0 and tends to p as t tends to infinity for each $x \in \mathbb{R}^n$. Here $\phi(t, x)$ is the solution of (1) with initial condition $\phi(0, x) = x$.

In [6], L. Markus and H. Yamabe establish their well known global stability conjecture. For a simpler formulation of the Conjecture we consider the next Definition.

Definition 1.1. Let $X : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 -vector field. We say that X is **Hurwitz** if for any $x \in \mathbb{R}^n$, all the eigenvalues of JX(x) have negative real part. Here JX(x) is the Jacobian of the map X at x.

The Markus–Yamabe Conjecture (MYC). Let $X : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 – Hurwitz vector field. If X(p) = 0, then p is a global attractor of system (1).

As is well known, the Conjecture is only true for $n \leq 2$. For any $n \geq 3$, A. Cima et al. [4] give an example of a polynomial Hurwitz vector field of \mathbb{R}^n which has orbits that scape to infinity. Moreover, a family of polynomial Hurwitz vector fields having orbits that scape to infinity is obtained in [5]; this family contains the preceding vector field.