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Abstract. We consider nonlinear elliptic problems with unilateral constraints (hemivariational inequali-
ties and variational–hemivariational inequalities). Using methods and techniques from nonsmooth crit-
ical point theory, we prove existence and multiplicity theorems when the linear part of the problem is
indefinite. Our results extend in different ways earlier works in the literature.
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1 Introduction
Let Ω ⊆ IRN be a bounded domain with a C2-boundary ∂Ω and let K ⊆ H1

0 (Ω) be
a closed convex cone (i.e., a closed convex set such that λK ⊆ K for all λ ≥ 0). In
this paper, we study the following two elliptic problems with a nonsmooth potential
: { −4u(z) + α(z)u(z) ∈ ∂F

(
z, u(z)

)
in Ω,

x
∣∣
∂Ω

= 0, α ∈ LN/2(Ω), N ≥ 3,

}
and (1)

{ ∫
Ω
(Du, Dy −Du)IRN dz +

∫
Ω

αu(y − u)dz ≥ ∫
Ω

f(y − u)dz ∀ y ∈ K,
with u ∈ K, f(z) ∈ ∂F

(
z, u(z)

)
a.e. in Ω, α ∈ LN/2(Ω), N ≥ 3.

}

(2)
In both problems the potential function F (z, x) is only locally Lipschitz and in

general nonsmooth in the x-variable. By ∂F (z, x) we denote the generalized subd-
ifferential in the sense of Clarke [3] of the function x −→ F (z, x). Problem (1) is a
“hemivariational inequality”. Hemivariational inequalities were introduced to treat
problems in mechanics and engineering where the relevant energy functionals are
neither convex nor smooth (the so-called superpotentials). Many such applications
can be found in the book of Naniewicz–Panagiotopoulos [13]. Another interesting
feature of problem (1) is that the function α ∈ LN/2(Ω) may change sign. So, the


