Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 629-637 Copyright ©2011 Watam Press

http://www.watam.org

EXISTENCE RESULTS FOR A CLASS OF NONLINEAR EQUATIONS

Silvia - Otilia Corduneanu

Department of Mathematics Gh. Asachi Technical University of Iaşi, Iaşi, Romania scorduneanu@vahoo.com

Abstract. In this paper we present two existence results for the Cauchy problem du = A(u)dt + dg, $u(0) = \xi$. We first suppose that $g : [0, a] \to \mathbb{R}^n$ is a function of bounded variation, $A : \mathbb{R}^n \to \mathbb{R}^n$ is a dissipative continuous function with A(0) = 0, $\xi \in \mathbb{R}^n$ and we prove that the above Cauchy problem has a unique solution $u \in L^{\infty}([0, a]; \mathbb{R}^n)$. In the second case we consider a locally closed set $\Sigma \subset \mathbb{R}^n$, we choose in a suitable manner the functions A, g and we propose a tangency condition which is sufficient for the existence of a solution with values in Σ .

 ${\bf Keywords.}$ Nonlinear equation, function of bounded variation, dissipative function.

AMS subject classification: 34G20, 47J05, 47H06, 47J25.

1 Introduction

In [5] it is presented a method closely related to Euler method of polygonal lines, to approximate the solution of the Cauchy problem

$$\left\{ \begin{array}{l} u' = f(u) \\ \\ u(0) = \xi, \end{array} \right.$$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is a dissipative continuous function with f(0) = 0 and $\xi \in \mathbb{R}^n$. We adapt some steps of the technique proposed in [5] and we discuss a similar method for the following Cauchy problem

$$\begin{cases} du = A(u)dt + dg \\ u(0) = \xi. \end{cases}$$
(1.1)

In this context $A : \mathbb{R}^n \to \mathbb{R}^n$ is a dissipative continuous function such that $A(0) = 0, g : [0, a] \to \mathbb{R}^n$ is a function of bounded variation and $\xi \in \mathbb{R}^n$.

Definition 1.1 We say that a function $u \in L^{\infty}([0, a]; \mathbb{R}^n)$ is a solution for the Cauchy problem (1.1) if