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Abstract. We consider a deterministic controlled dynamics in which the state variables

evolve on two different time scales: the velocity of the fast variables is proportional to a

positive parameter 𝜖−1. By using results in homogenization of Hamilton-Jacobi equations

we show that, under suitable controllability assumptions, the behavior of the dynamics as

𝜖 → 0 is governed by a limit optimal control problem, just for the slow variables, obtained

by averaging the original vector field with certain probability measures, called limiting

relaxed control. As an application, we study the homogenization of fronts undergoing fast

oscillations.
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Introduction

In this paper we consider the following deterministic singularly perturbed
control system: {

�̇�𝑡 = 𝑓(𝑥𝑡, 𝑦𝑡, 𝑎𝑡) 𝑥0 = 𝑥

𝜖�̇�𝑡 = 𝑔(𝑥𝑡, 𝑦𝑡, 𝑎𝑡) 𝑦0 = 𝑦
(S𝜖)

where 𝑥 ∈ ℝ𝑁 , 𝑦 ∈ ℝ𝑀 . The functions 𝑎𝑡 are controls, namely measurable
functions defined for any 𝑡 > 0 and valued in a given compact metric space
𝐴. We denote by 𝒜 the set of such functions. The notation (𝑥𝑡, 𝑦𝑡) refers to
the state of the solution of (S𝜖) at time 𝑡. The following assumptions on the
data are standard (see [1], [2], [9], [17]) and are supposed to hold throughout
the paper without any further mention:

1. the functions 𝑓 , and 𝑔 are bounded and uniformly continuous in ℝ𝑁 ×
ℝ𝑀 ×𝐴, with values, respectively in ℝ𝑁 , and ℝ𝑀 ;


