Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 653-672 Copyright ©2011 Watam Press

http://www.watam.org

LIMITING RELAXED CONTROLS AND AVERAGING OF SINGULARLY PERTURBED DETERMINISTIC CONTROL SYSTEMS

Gabriele Terrone

Instituto Superior Técnico, Universidade Técnica de Lisboa Departamento de Matemática Av. Rovisco Pais, 1049-001 Lisboa, Portugal email: gterrone@math.ist.utl.pt

Abstract. We consider a deterministic controlled dynamics in which the state variables evolve on two different time scales: the velocity of the *fast* variables is proportional to a positive parameter ϵ^{-1} . By using results in homogenization of Hamilton-Jacobi equations we show that, under suitable controllability assumptions, the behavior of the dynamics as $\epsilon \to 0$ is governed by a limit optimal control problem, just for the *slow* variables, obtained by averaging the original vector field with certain probability measures, called limiting relaxed control. As an application, we study the homogenization of fronts undergoing fast oscillations.

Keywords. Singular perturbation; Control systems; Viscosity solutions; Hamilton-Jacobi equations; Limiting relaxed controls; Occupational measures; Differential inclusions; Moving interfaces.

AMS subject classification: 93C70 (34H05 34A60 49L25).

Introduction

In this paper we consider the following deterministic singularly perturbed control system:

$$\begin{cases} \dot{x}_t = f(x_t, y_t, a_t) & x_0 = x\\ \epsilon \dot{y}_t = g(x_t, y_t, a_t) & y_0 = y \end{cases}$$
(S_{\epsilon})

where $x \in \mathbb{R}^N$, $y \in \mathbb{R}^M$. The functions a_t are *controls*, namely measurable functions defined for any t > 0 and valued in a given compact metric space A. We denote by \mathcal{A} the set of such functions. The notation (x_t, y_t) refers to the state of the solution of (S_{ϵ}) at time t. The following assumptions on the data are standard (see [1], [2], [9], [17]) and are supposed to hold throughout the paper without any further mention:

1. the functions f, and g are bounded and uniformly continuous in $\mathbb{R}^N \times \mathbb{R}^M \times A$, with values, respectively in \mathbb{R}^N , and \mathbb{R}^M ;