Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 673-697 Copyright ©2011 Watam Press

http://www.watam.org

STABILITY CRITERIA FOR CERTAIN NEUTRAL HIGH EVEN ORDER DELAY DIFFERENTIAL EQUATIONS

Baruch Cahlon and Darrell Schmidt

Department of Mathematics and Statistics Oakland University Rochester, MI 48309-4401

Abstract. In this paper we study the asymptotic stability of the zero solution of neutral even order linear delay differential equations of the form

$$y^{(2m)}(t) + \alpha y^{(2m)}(t-\tau) = \sum_{j=0}^{2m-1} a_j y^{(j)}(t) + \sum_{j=0}^{2m-1} b_j y^{(j)}(t-\tau)$$

where a_j , b_j , $\alpha \in (-1,0) \cup (0,1)$ are certain constants and $m \ge 1$. Here $\tau > 0$ is a constant delay. In this paper, we obtain a necessary condition and obtain robusts method of determining whether the zero solution is asymptotically stable. In proving our results we make use of Pontryagin's theory for quasi-polynomials. **2010 Mathematics Subject Classification** : 34K20, 34K40

Keywords: asymptotic stability, stability criteria, sufficient conditions, delay, characteristic functions, stability regions.

1 Introduction

The aim of this paper is to study the asymptotic stability of the zero solution of the neutral delay differential equation

$$y^{(2m)}(t) + \alpha y^{(2m)}(t-\tau) = \sum_{j=0}^{2m-1} a_j y^{(j)}(t) + \sum_{j=0}^{2m-1} b_j y^{(j)}(t-\tau)$$
(1.1)

where $\tau > 0$, a_j , b_j (j = 0, 1, ..., 2n - 1) and α are constants and $m \ge 1$. There are numerous applications of neutral differential equations in scientific models such as of masses attached to an elastic bar [1], population growth [2] and more. An intersting application of neutral equations appears in [3] and involves an interplay between physical observation and simulation (called "real-time dynamic substructuring") for seismic testing. There are many studies of neutral equations mainly dealing with oscillations or sufficient conditions of stability of the zero solution See [4-8]. In these studies necessary