Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 719-730 Copyright ©2011 Watam Press

http://www.watam.org

TRIPLE POSITIVE SOLUTIONS TO BVP FOR *P*-LAPLACIAN IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES

Ruixi Liang¹ and Jianhua Shen²

¹Department of Mathematics Central South University, Changsha Hunan, P. R. China Corresponding author email:maths_lrx@csu.edu.cn

²Department of Mathematics Hangzhou Normal University, Hangzhou, Zhejiang, P. R. China

Abstract. The five functionals fixed point theorem is applied to investigate the existence of at least three positive solutions of boundary value problems for *p*-Laplacian impulsive functional dynamic equations on time scales.

Keywords.Time scale; *p*-Laplacian; Positive solution; Five functionals fixed point theorem; Impulsive differential equation; Boundary value problem.

AMS (MOS) subject classification: 34B37.

1 Introduction

The study of dynamic equations on time scales (or measure chains) goes back to its founder Hilger [14] and is undergoing rapid development, and this provides a unifying structure for the study of differential equations in the continuous case and the study of finite difference equations in the discrete case; see [2,5,6,10,11,13-16,25] and reference therein. Some basic definitions and theorems on time scales can be founded in the book [10] and another excellent source on time scales is the book [11]. A time scale (or measure chain) \mathbb{T} is a closed nonempty subset of R. We assume that \mathbb{T} has the subspace topology inherited from the Euclidean topology on R. For notation, we shall use the convention that, for each interval J of R, $J_{\mathbb{T}} = J \cap \mathbb{T}$.

On the other hand, impulsive differential equations have become an important aspect of differential equations as it occurs in many applications: physic, population dynamic, ecology, biological systems etc. Therefore, the study of this class of dynamical systems has gain prominence and it is a rapidly growing field. At present, some qualitative properties such as oscillation, asymptotic behavior, stability and existence of solutions are investigated extensively by many authors [3,4,18-24,26]. However, as far as we know, only a little work has been done for boundary value problem (BVP) for impulsive dynamic equations on time scales [1,9,12,17].