Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 18 (2011) 813-837 Copyright ©2011 Watam Press

http://www.watam.org

APPROXIMATING COMMON SOLUTION OF VARIATIONAL INCLUSIONS AND GENERALIZED MIXED EQUILIBRIUM PROBLEMS

Thanyarat Jitpeera¹ and Poom Kumam^{1,2,3}

¹Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand

²Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand *E-mails*: pukka6111@hotmail.com (T. Jitpeera) and poom.kum@kmutt.ac.th (P. Kumam)

Abstract In this paper, we introduce a new general iterative scheme for finding a common element of the set of solutions a common of generalized mixed equilibrium problems, the set of solutions of the variational inclusions with set-valued maximal monotone mapping and inverse-strongly monotone mapping, and the set of the fixed points of a family of finitely nonexpansive mappings in the setting of Hilbert spaces. We prove that the sequence converges strongly to a common element of the above three sets under some mild conditions. Our results improve and extend the corresponding results of Plubtieng and Sriprad (2009), Shehu (2010) and some authors.

Keywords. strong convergence; strictly pseudo-contraction; fixed point; variational inclusion; generalized mixed equilibrium problem; maximal monotone mapping, inverse-strongly monotone mapping

AMS (MOS) subject classification: 46C05, 47D03, 47H09, 47H10, 47H20.

1 Introduction

Throughout this paper, we assume that H is a real Hilbert space with inner product and norm are denoted by $\langle ., . \rangle$ and $\|.\|$, respectively. Let 2^H denotes the family of all subsets of H and C be a closed convex subset of H. Recall that a mapping $T: C \to C$ is said to be a *k*-strict pseudo-contraction [5] if there exists $0 \leq k < 1$ such that

$$||Tx - Ty||^2 \le ||x - y||^2 + k||(I - T)x - (I - T)y||^2, \forall x, y \in C_{\mathbf{x}}$$

where I denotes the identity operator on C. When $k = 0, T : C \to C$ is said to be *nonexpansive* [11] if

$$||Tx - Ty|| \le ||x - y||, \ \forall x, y \in C.$$

⁰The project was supported by the Centre of Excellence in Mathematics under the Commission on Higher Education, Ministry of Education, Thailand.

³Corresponding author: poom.kum@kmutt.ac.th (P. Kumam)