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Abstract. An essentially nonlinear difference equation with delay serving as a mathemat-

ical model of several applied problems is considered. Sufficient conditions for the existence

of periodic solutions are derived.
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1 Introduction

This paper deals with a class of scalar essentially nonlinear difference equa-
tions with delay of the form

µ∆xn = F (xn−K)−G(xn+1), (1)

where ∆xn := xn+1−xn is the standard difference, µ > 0 is a real parameter,
and the positive integer K is a delay. Functions F and G are real-valued and
continuous.

Our motivation to study this equation is multifold. Firstly, equation (1)
can be viewed as a discrete version of the continuous time differential delay
equation

εẋ(t) = F (x(t− τ))−G(x(t)). (2)

The latter has recently found several important applications in physiology,
economics, and other areas (see e.g. [11, 12, 13, 14] and further references
therein). It appears that equation (2) can possess quite complicated dynamic-
s, including existence of periodic solutions and chaotic dynamics. Its complex
dynamics are well documented for the case of linear G(x) = −bx, b > 0, see
e.g. [1, 10, 15, 16, 19]. There are only a few studies on equation (2) in the


