## MINIMAX FRACTIONAL INTEGRAL PROGRAMMING PROBLEMS INVOLVING UNIVEXITY

S. K. Mishra<sup>1</sup>, K. Shukla<sup>1</sup> and R. U. Verma<sup>2</sup>

<sup>1</sup>Department of Mathematics Banaras Hindu University, Varanasi 221005, India

<sup>2</sup> Department of Mathematics Texas A&M University, Kingsville, Texas 78363, USA Corresponding author email: bhu.skmishra@gmail.com

**Abstract.** In this paper, we consider the problem that consists of minimizing a maximum of several time dependent ratios involving integral expressions. We establish optimality conditions based on the generalized univexity. Furthermore, we explore the Wolfe type dual model, Mond-Weir type dual model, one parameter dual model and Mixed type dual model, and then establish weak, strong and strict converse duality theorems under generalized univexity conditions.

**Keywords.** Nondifferentiable fractional variational programming; Invexity; Quasiinvexity Pseudoinvexity; Duality.

AMS (MOS) subject classification: 49K50, 90C32.

## 1 Introduction

Fractional programming is one of the most application-enhanced areas of optimization which features in several types of practical problems. It can be applied to different branches of engineering as well as to economics to minimize a ratio of functions between given periods of time. Furthermore it can be utilized as a resource in order to measure the efficiency or productivity of a system. In such type of problems the objective function is given as a ratio of functions (see Stancu-Minasian [10]).

In the present paper, we consider a problem that deals with minimizing a maximum of several time dependent ratios involving integral expressions. Several researchers have investigated this type of problem, including Chen and Lai [2], Chandra et al. [1], Craven [3], Crouzeix et al. [4], Lee and Lai [7], Mond et al. [8], and Mond and Husain [9], while we extend the results of Lai [5] and Lai and Liu [6] to the case of the generalized univexity. As our problem involves a state function x(t) in the integrand of the integration, the obtained results also relate to the problems on optimal control. For more details, we refer the reader [11-13].