Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 19 (2012) 351-375 Copyright ©2012 Watam Press

http://www.watsci.org

DYNAMICS OF CONTINUOUS AND DISCRETE TIME SIV MODELS OF GONORRHEA TRANSMISSION

Issic K. C. Leung¹ and K. Gopalsamy²

¹Department of Mathematics and Information Technology The Hong Kong Institute of Education, Hong Kong SAR, P. R. China

²School of Computer Science, Engineering and Mathematics Flinders University, GPO Box 2100, Adelaide, Australia 5001 Corresponding author email:ikcleung@ied.edu.hk

Abstract. A continuous-time SIV (susceptible-infected-vaccinated) model of the transmission of Gonorrhea among homosexuals is analyzed. A basic reproduction number R_o is identified and it is shown that the disease-free equilibrium is globally asymptotically stable when $\mathbb{R}_o \leq 1$. It is also shown that this equilibrium is unstable when $\mathbb{R}_o > 1$ and there exists a globally asymptotically stable endemic equilibrium in this case. These results are obtained by using the theory of asymptotically autonomous dynamical systems to reduce progressively the dimension of the systems. A nonstandard discretization method is used to formulate a discrete time model and it is shown that this discrete-time model preserves some important dynamical characteristics of the continuous time model including the basic reproduction number. The results of the discrete-time model and the basic reproduction number do not depend on the discretization step size and are exactly the same as those of the continuous time model.

Keywords. Gonorrhea Transmission, Non-Standard Discretization Method, Asymptotically Autonomous, Basic Reproduction Number, Disease-Free Equilibrium, Endemic Equilibrium, Global Stability, Threshold Behavior.

AMS (MOS) subject classification: 92D30, 34D23.

Dynam. Cont. Dis. Ser. B, vol. 19, no. 3, pp. 351-375, 2012.

References

- L.J.S. Allen, Some discrete time SI, SIR and SIS epidemic models. *Math Biosci.*, 124, (1994) 83–105.
- [2] L.J.S. Allen and A.M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time. *Math. Biosci.*, 163, (2000) 1–33.
- [3] A.J. Arenas, G. Gonzalez-Parra and B.M. Chen-Charpentier, A nonstandard numerical scheme of predictor-corrector type for epidemic models, *Comput. Math. Applic.*, **59**, (2010) 3740–3749.
- [4] B. Buonomo and D. Lacitignola, On the dynamics of an SEIR epidemic model with a convex incidence rate. *Riecerche. Mat.*, 57, (2008) 261–281.
- [5] C. Castillo-Chavez and A.A. Yakubu, Discrete time SIS models with complex dynamics. Nonlinear Analysis, 47, (2001) 4753–4762.
- [6] C. Castillo-Chavez and H.R. Thieme, Asymptotically autonomous epidemic models. Mathematical Population Dynamics: Analysis and Hetergeneity I: Theory of Epidemics (O.Arino et al. eds.) Wuerz, (1995) 33–50.
- [7] K.M. Crowe, Persistence in systems of asymptotically autonomous difference equations. Jour. Diff. Eqns. Appl., 7, (2001) 143–165.
- [8] Cruz Vargas-De-Leon, Constructions of Lyapunov functions for classics SIS, SIR and SEIRS epidemic model with variable population size. Foro-Red-Mat: Revista Electronica de Contenido Matematico, 26, (2009) 1–12.
- Cruz Vargas-De-Leon and G. Gomez-Alcaraz, Global stability conditions of delayed SIRS epidemiological models for vector diseases, (2010): available at http://www.red-mat.unam.mx/foro/volumenes/vol028/SIRS.pdf.
- [10] Cruz Vargas-De-Leon, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. *Chaos, Solitons & Fractals*, 44, (2011a) 1106–1110.
- [11] Cruz Vargas-De-Leon, Stability analysis of a SIS epidemic model with standard incidence. Foro-Red-Mat: Revista Electronica de Contenido Matematico, 28, Number 4, (2011b) 1–11.
- [12] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases, Wiley Series in Mathematical and Computational Biology. Wiley, West Sussex, England. 2002.
- [13] Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR epidemic models, *Math. Biosci. Engl.*, 7, (2010) 347–361.
- [14] A. Fall, A. Iggidr, G. Sallet and J.J. Tewa, Epidemiological models and Lyapunov functions. *Math. Modelling and Nat. Phenomena*, 2, (2007) 55–73.
- [15] L. Han, Z. Ma and H.W. Hethcote, Four predator-prey models with infectious diseases. Math. Comput. Mod., 24, (2001) 849–858.
- [16] J.M. Heffernen, R.J. Smith and L.M. Wahl, Perspectives on the basic reproduction ratio. Jour. Royal Soc. Interface, 2, (2005) 281–293.
- [17] H.W. Hethcote and J.A. Yorke, Gonorrhea transmission and control, Lecture Notes in Biomathematics, vol. 56, Springer Verlag, Berlin, Heidelberg, 1984.
- [18] M.W. Hirsch, H.L. Smith and X.Q. Zhao, Chain transitivity, attractivity and strong repellors for semi-dynamical systems. *Jour. Dyn. Diff. Eqns.*, 13, (2001) 107–130.
- [19] J. Hurt, Some stability theorems for ordinary difference equations, SIAM J. of Numer. Anal., 4, (1967) 582–596.
- [20] G. Izzo and A. Vecchio, A discrete time version for models of population dynamics in the presence of an infection. Jour. Comput. Appl. Math., 210, (2007) 210–221.

- [21] G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics in the presence of an infection. *Disc. Dyn. Nat. Soc.*, Article ID 143019, (2009) 15 pages.
- [22] S.R.J. Jang, On a discrete West Nile epidemic model. Comp. Appl. Math., 26, (2007) 397–414.
- [23] S.R.J. Jang, Nonstandard finite difference and biological models, in Nonstandard Finite Difference Methods and Biological Models, Ed. R.Mickens, World Scientific. (2010). pp. 424–457.
- [24] S.R.J. Jang and S. Elaydi, Difference equations derived from discretization of a continuous epidemic model with immigration of infectives. *Can. Appl. Math. Quart.* 11, (2003) 93–106.
- [25] L. Jodar, R. J. Villanueva, A.J. Arenas and G.C. Gonzalez, Nonstandard numerical methods for a mathematical model for influenza disease. *Math. Comput. Simula*tion., **79**, (2008) 622–633.
- [26] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. *Bull. Math. Biol.*, **30**, (2006) 615–626.
- [27] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math. Medicine and Biol., 21, (2004) 75–83.
- [28] A. Korobeinikov and P.K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. *Math. Biosci. Engin.*, 1, (2004) 57–60.
- [29] M.A. Lewis, J. Renclawowicz, P. van den Driessche and M. Wonham, A comparison of continuous and discrete-time West Nile virus models. *Bull. Math. Biol.*, 68, (2006) 491–509.
- [30] Michael Y. Li and L. Wang, Global stability in some SEIR epidemic models. In: Mathematical approaches for emerging and reemerging infectious diseases: models, methods and theory. *IMA Math. Appl.*, Vol. 126, 295–311, Springer, New York, 2002.
- [31] Michael Y. Li, J. B. Mulodowney and P. Van Den Driessche, Global stability of SEIRS mdoels in epidemiology. Can. Appl. Math. Quart., 7, (1999) 409–425.
- [32] Michael Y. Li, Hal L. Smith and L. Wang, Global dynamics of an SEIR epidemic model with vertical transmission. SIAM. J. Appl. Math., 62, (2001) 58–69.
- [33] J. Li , Z. Ma and F. Brauer, Global analysis of discrete-time SI and SIS epidemic models. *Math. Biosci. Engg.*, 4, (2007) 699–710.
- [34] J.Q. Li, J. Lou and M.Z. Lou, Some discrete SI and SIS epidemic models. Appl. Math. Mech. (English Edition), 29, (2008) 113–119.
- [35] X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos, Solitons and Fractals, 20, (2005) 947–958.
- [36] S.K. Lima and M. Torres, Models for the transmission dynamics of Gonorrhea in a homosexually active population, 1999: available at http://mtbi.asu.edu/research/archive.
- [37] L. Markus, Asymptotically autonomous differential systems. Contributions to the theory of Nonlinear Oscillations, Vol. 3, Princeton University Press, New Jersey, 1956, pp. 17–29.
- [38] R.E. Mickens, Nonstandard finite difference models of differential equations. World Scientific, Singapore, 1994.
- [39] R.E. Mickens, Advances in the applications of nonstandard finite difference schemes. World Scientific, Singapore, 2005.

- [40] S.M. O'Regan, T.C. Kelly, A. Korobeinikov, M.J.A. O'Callaghan and A.V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models. *Appl. Math. Lett.*, 23, (2010) 446–448.
- [41] W. Piyawong, E.H. Twizell and A.B. Gumel, An unconditionally convergent finitedifference scheme for the SIR model. Appl. Math. Comp., 146, (2003) 611–625.
- [42] L. Roger and R.W. Barnard, Preservation of local dynamics when applying central difference methods: application to SIR model, *Jour. Difference Eqns. Appl.*, 13, (2007) 333–340.
- [43] M. Sekiguchi, Permanence of some discrete epidemic models. Inter. Jour. Biomath., 2, (2009) 443–461.
- [44] H.R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. *Jour. Math. Biol.*, **30**, (1992) 755–763.
- [45] H.R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mount. Jour. Math., 24, (1994) 351–380.
- [46] D.M. Thomas and B. Urena, A model describing the evolution of West Nile-like encephalitis in New York city. *Math. Comp. Model.*, 34, (2001) 771–781.
- [47] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. *Math. Biosci.*, 180, (2002) 29–48.
- [48] R.J. Villanueva, A.J. Arenas and P.G. Gonzalez, A nonstandard dynamically consistent numerical scheme applied to obesity dynamics. *Jour. Appl. Math.*, (2008) Article ID 640154.
- [49] Z. Yicang and P. Fergola, Dynamics of a discrete age-structured SIS models. Discrete and Cont. Dyn. Systems, 4, (2004) 841–850.
- [50] J. Zhang and Z. Jin, Discrete time SI and SIS epidemic models with vertical transmission. Jour. Biol. Syst. 17, (2009) 201–212.
- [51] X.Q. Zhao, Asymptotic behaviour for asymptotically periodic semiflows with applications. Comm. Appl. Nonlin. Anal., 3, (1996) 43–66.
- [52] X.Q. Zhao, Dynamical systems in population biology. CMS books in mathematics, 16, Springer, Berlin, 2003.
- [53] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China. Math. Comput. Modell., 40, (2004) 1491–1506.

Received October 2011; revised February 2012.

http://monotone.uwaterloo.ca/~journal/