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Abstract. A continuous-time SIV (susceptible-infected-vaccinated) model of the trans-

mission of Gonorrhea among homosexuals is analyzed. A basic reproduction number Ro is

identified and it is shown that the disease-free equilibrium is globally asymptotically stable

when Ro ≤ 1. It is also shown that this equilibrium is unstable when Ro > 1 and there

exists a globally asymptotically stable endemic equilibrium in this case. These results are

obtained by using the theory of asymptotically autonomous dynamical systems to reduce

progressively the dimension of the systems. A nonstandard discretization method is used

to formulate a discrete time model and it is shown that this discrete-time model preserves

some important dynamical characteristics of the continuous time model including the basic

reproduction number. The results of the discrete-time model and the basic reproduction

number do not depend on the discretization step size and are exactly the same as those of

the continuous time model.

Keywords. Gonorrhea Transmission, Non-Standard Discretization Method, Asymptot-

ically Autonomous, Basic Reproduction Number, Disease-Free Equilibrium, Endemic E-

quilibrium, Global Stability, Threshold Behavior.

AMS (MOS) subject classification: 92D30, 34D23.

Dynam. Cont. Dis. Ser. B, vol. 19, no. 3, pp. 351-375, 2012.



References
[1] L.J.S. Allen, Some discrete time SI, SIR and SIS epidemic models. Math Biosci.,

124, (1994) 83–105.

[2] L.J.S. Allen and A.M. Burgin, Comparison of deterministic and stochastic SIS and
SIR models in discrete time. Math. Biosci., 163, (2000) 1–33.

[3] A.J. Arenas, G. Gonzalez-Parra and B.M. Chen-Charpentier, A nonstandard nu-
merical scheme of predictor-corrector type for epidemic models, Comput. Math.
Applic., 59, (2010) 3740–3749.

[4] B. Buonomo and D. Lacitignola, On the dynamics of an SEIR epidemic model with
a convex incidence rate. Riecerche. Mat., 57, (2008) 261–281.

[5] C. Castillo-Chavez and A.A. Yakubu, Discrete time SIS models with complex dy-
namics. Nonlinear Analysis, 47, (2001) 4753–4762.

[6] C. Castillo-Chavez and H.R. Thieme, Asymptotically autonomous epidemic mod-
els. Mathematical Population Dynamics: Analysis and Hetergeneity I: Theory of
Epidemics (O.Arino et al. eds.) Wuerz, (1995) 33–50.

[7] K.M. Crowe, Persistence in systems of asymptotically autonomous difference equa-
tions. Jour. Diff. Eqns. Appl., 7, (2001) 143–165.

[8] Cruz Vargas-De-Leon, Constructions of Lyapunov functions for classics SIS, SIR
and SEIRS epidemic model with variable population size. Foro-Red-Mat: Revista
Electronica de Contenido Matematico, 26, (2009) 1–12.

[9] Cruz Vargas-De-Leon and G. Gomez-Alcaraz, Global stability conditions of delayed
SIRS epidemiological models for vector diseases, (2010): available at
http://www.red-mat.unam.mx/foro/volumenes/vol028/SIRS.pdf.

[10] Cruz Vargas-De-Leon, On the global stability of SIS, SIR and SIRS epidemic models
with standard incidence. Chaos, Solitons & Fractals, 44, (2011a) 1106–1110.

[11] Cruz Vargas-De-Leon, Stability analysis of a SIS epidemic model with standard inci-
dence. Foro-Red-Mat: Revista Electronica de Contenido Matematico, 28, Number
4, (2011b) 1–11.

[12] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious dis-
eases, Wiley Series in Mathematical and Computational Biology. Wiley, West Sus-
sex, England. 2002.

[13] Y. Enatsu, Y. Nakata and Y. Muroya, Global stability for a class of discrete SIR
epidemic models, Math. Biosci. Engi., 7, (2010) 347–361.

[14] A. Fall, A. Iggidr, G. Sallet and J.J. Tewa, Epidemiological models and Lyapunov
functions. Math. Modelling and Nat. Phenomena, 2, (2007) 55–73.

[15] L. Han, Z. Ma and H.W. Hethcote, Four predator-prey models with infectious dis-
eases. Math. Comput. Mod., 24, (2001) 849–858.

[16] J.M. Heffernen, R.J. Smith and L.M. Wahl, Perspectives on the basic reproduction
ratio.Jour. Royal Soc. Interface, 2, (2005) 281–293.

[17] H.W. Hethcote and J.A. Yorke, Gonorrhea transmission and control, Lecture Notes
in Biomathematics, vol. 56, Springer Verlag, Berlin, Heidelberg, 1984.

[18] M.W. Hirsch, H.L. Smith and X.Q. Zhao, Chain transitivity, attractivity and strong
repellors for semi-dynamical systems. Jour. Dyn. Diff. Eqns., 13, (2001) 107–130.

[19] J. Hurt, Some stability theorems for ordinary difference equations, SIAM J. of
Numer. Anal., 4, (1967) 582–596.

[20] G. Izzo and A. Vecchio, A discrete time version for models of population dynamics
in the presence of an infection. Jour. Comput. Appl. Math., 210, (2007) 210–221.

2



[21] G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population
dynamics in the presence of an infection. Disc. Dyn. Nat. Soc., Article ID 143019,
(2009) 15 pages.

[22] S.R.J. Jang, On a discrete West Nile epidemic model. Comp. Appl. Math., 26,
(2007) 397–414.

[23] S.R.J. Jang, Nonstandard finite difference and biological models, in Nonstandard
Finite Difference Methods and Biological Models, Ed. R.Mickens, World Scientific.
(2010). pp. 424–457.

[24] S.R.J. Jang and S. Elaydi, Difference equations derived from discretization of a
continuous epidemic model with immigration of infectives. Can. Appl. Math.
Quart.. 11, (2003) 93–106.

[25] L. Jodar, R. J. Villanueva, A.J. Arenas and G.C. Gonzalez, Nonstandard numerical
methods for a mathematical model for influenza disease.Math. Comput. Simula-
tion., 79, (2008) 622–633.

[26] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epi-
demiological models with nonlinear transmission. Bull. Math. Biol., 30, (2006)
615–626.

[27] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS
epidemic models. Math. Medicine and Biol., 21, (2004) 75–83.

[28] A. Korobeinikov and P.K. Maini, A Lyapunov function and global properties for SIR
and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Engin.,
1, (2004) 57–60.

[29] M.A. Lewis, J. Renclawowicz, P. van den Driessche and M. Wonham, A comparison
of continuous and discrete-time West Nile virus models. Bull. Math. Biol., 68,
(2006) 491–509.

[30] Michael Y. Li and L. Wang, Global stability in some SEIR epidemic models. In:
Mathematical approaches for emerging and reemerging infectious diseases: models,
methods and theory. IMA Math. Appl., Vol. 126, 295–311, Springer, New York,
2002.

[31] Michael Y. Li, J. B. Mulodowney and P. Van Den Driessche, Global stability of
SEIRS mdoels in epidemiology. Can. Appl. Math. Quart., 7, (1999) 409–425.

[32] Michael Y. Li, Hal L. Smith and L. Wang, Global dynamics of an SEIR epidemic
model with vertical transmission. SIAM. J. Appl. Math., 62, (2001) 58–69.

[33] J. Li , Z. Ma and F. Brauer, Global analysis of discrete-time SI and SIS epidemic
models. Math. Biosci. Engg., 4, (2007) 699–710.

[34] J.Q. Li, J. Lou and M.Z. Lou, Some discrete SI and SIS epidemic models. Appl.
Math. Mech. (English Edition), 29, (2008) 113–119.

[35] X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos, Solitons
and Fractals, 20, (2005) 947–958.

[36] S.K. Lima and M. Torres, Models for the transmission dynamics of Gonorrhea in a
homosexually active population, 1999: available at
http://mtbi.asu.edu/research/archive.

[37] L. Markus, Asymptotically autonomous differential systems. Contributions to the
theory of Nonlinear Oscillations, Vol. 3, Princeton University Press, New Jersey,
1956, pp. 17–29.

[38] R.E. Mickens, Nonstandard finite difference models of differential equations. World
Scientific, Singapore, 1994.

[39] R.E. Mickens, Advances in the applications of nonstandard finite difference schemes.
World Scientific, Singapore, 2005.

3



[40] S.M. O’Regan, T.C. Kelly, A. Korobeinikov, M.J.A. O’Callaghan and A.V. Pokrovski-
i, Lyapunov functions for SIR and SIRS epidemic models. Appl. Math. Lett., 23,
(2010) 446–448.

[41] W. Piyawong, E.H. Twizell and A.B. Gumel, An unconditionally convergent finite-
difference scheme for the SIR model. Appl. Math. Comp., 146, (2003) 611–625.

[42] L. Roger and R.W. Barnard, Preservation of local dynamics when applying central
difference methods: application to SIR model, Jour. Difference Eqns. Appl., 13,
(2007) 333–340.

[43] M. Sekiguchi, Permanence of some discrete epidemic models. Inter. Jour. Biomath.,
2, (2009) 443–461.

[44] H.R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymp-
totically autonomous differential equations. Jour. Math. Biol., 30, (1992) 755–763.

[45] H.R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky
Mount. Jour. Math., 24, (1994) 351–380.

[46] D.M. Thomas and B. Urena, A model describing the evolution of West Nile-like
encephalitis in New York city. Math. Comp. Model., 34, (2001) 771–781.

[47] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math. Biosci.,
180, (2002) 29–48.

[48] R.J. Villanueva, A.J. Arenas and P.G. Gonzalez, A nonstandard dynamically con-
sistent numerical scheme applied to obesity dynamics. Jour. Appl. Math., (2008)
Article ID 640154.

[49] Z. Yicang and P. Fergola, Dynamics of a discrete age-structured SIS models. Dis-
crete and Cont. Dyn. Systems, 4, (2004) 841–850.

[50] J. Zhang and Z. Jin, Discrete time SI and SIS epidemic models with vertical trans-
mission. Jour. Biol. Syst. 17, (2009) 201–212.

[51] X.Q. Zhao, Asymptotic behaviour for asymptotically periodic semiflows with appli-
cations. Comm. Appl. Nonlin. Anal., 3, (1996) 43–66.

[52] X.Q. Zhao, Dynamical systems in population biology. CMS books in mathematics,
16, Springer, Berlin, 2003.

[53] Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission
and control in China.Math. Comput. Modell., 40, (2004) 1491–1506.

Received October 2011; revised February 2012.

http://monotone.uwaterloo.ca/∼journal/

4


