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Abstract. This paper presents an efficient numerical approach, based on the Laplace

transform, for pricing American puts. After the appropriate expressions of the optimal

exercise price as well as the option price are found in the Laplace space based on the pseudo-

steady-state approximation (see [26]), numerical inversions are performed to restore their

corresponding values in the original time space. Among many numerical inversion tech-

niques, we have found that three are most suitable for the functions arising from option

pricing problems. Then, out of these three methods, we have also found that, through nu-

merical experiments, the Stehfest method is the best, in terms of both numerical accuracy

and computation efficiency. A great advantage of this numerical approach is its robustness

of calculating the Greeks of an option.
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