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Abstract. Recent studies employing graph theoretic techniques from Complex Networks

revealed the co-evolution of emergent minimal contact cycles and load-bearing force chains

as mesoscopic structures that form the basic building blocks of self-organization. This s-

tudy demonstrates previously observed trends for two-dimensional assemblages of circular

discs to equally apply when network analysis is applied to data from three-dimensional

systems comprising non-spherical particles. As previously reported for two-dimensional

systems, the 3-cycles minimal contact cycle basis is both prevalent and persistent, provid-

ing support to force chains. In a new finding, the majority of those 3-cycles are arranged

so that they share a common contact with the force chain column, transmitting nearly

uniform normal contact force magnitudes at the three contacts. Persistent 3-cycles in the

sample are absent in the region of strain localization in which force chains buckle, a finding

that suggests a possible new structural indicator of failure and associated boundaries of

flow.
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