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Abstract. This paper considers semi-analytical solutions for a class of generalised logis-

tic partial differential equations with both point and distributed delays. Both one and

two-dimensional geometries are considered. The Galerkin method is used to approximate

the governing equations by a system of ordinary differential delay equations. This method

involves assuming a spatial structure for the solution and averaging to obtain the ordinary

differential delay equation models. Semi-analytical results for the stability of the system

are derived with the critical parameter value, at which a Hopf bifurcation occurs, found.

The results show that diffusion acts to stabilise the system, compared to equivalent non-

diffusive systems and that large delays, which represent feedback from the distant past, act

to destabilize the system. Comparisons between semi-analytical and numerical solutions

show excellent agreement for steady state and transient solutions, and for the parameter

values at which the Hopf bifurcations occur.
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