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Abstract. This paper presents a study of the effects of symmetry on the generic bifurca-

tion at a double-zero eigenvalue that was first investigated by Bogdanov and Takens. Two

different symmetry groups are considered: Huygens symmetry and odd-Huygens symme-

try. Here Huygens symmetry means that the system is equivariant under permutation of

the two state variables. Using Hilbert-Weyl theory, normal forms are given for each sym-

metry group. The normal forms are further simplified using Gavrilov’s transformation, and

formulae are presented that allow identification of the normal form parameters in terms

of the coefficients of the original system. Complete sets of codimension-two bifurcation

diagrams with representative phase portraits are presented, for both symmetries. These

diagrams exhibit codimension-one bifurcations including saddlenode, pitchfork, Hopf and

heteroclinic. The effects of symmetry-breaking perturbations on these codimension-one

bifurcations are analyzed. The results presented here contrast strongly with the classical

results of Bogdanov and Takens.
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