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Abstract. This paper is concerned with the existence of homoclinic orbits of the second
order differential difference equations containing both advance and retardation

z̈(t)−Kz(t, z(t)) + f(t, z(t + τ), z(t), z(t− τ)) = h(t) .

Using critical point theory we show a nontrivial homoclinic orbit is obtained as a limit of

a sequence of periodic solutions of the equation.
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[1] V. Coti Zelati, I. Ekeland and E. Sésé, A variational approach to homoclinic orbits

in Hamil- tonian systems, Math. Ann, 228, (1990) 133-160.

[2] V.Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamilto-
nian systems possessing superquadratic potentials, A Second Course in Elementary
Differential Equations, J. Amer. Math. Soc, 4, (1991) 693-727.

[3] Y. H. Ding, Existence and multiplicity results for homoclinic solutions to a class of
Hamiltonian systems, Nonlinear Anal, 25, (1995) 1095-1113.

[4] Y. H. Ding and M. Girardi, Periodic and homoclinic solutions to a class of Hamilto-
nian systems with the potentials changing sign, J. Math. Anal. Appl, 189, (1995)
585-601.

[5] Y. H. Ding and L. Jeanjean, Homoclinic orbits for a nonperiodic Hamiltonian sys-
tem, J. Diff. Eqns, 237, (2007) 473-490.

[6] C. J. Guo, D. O’Regan and R. Agarwal, Homoclinic orbits for singular second-order
neutral differential equation, J.Math.Anal.Appl, 366, (2010) 550-560.

[7] C. J. Guo, D. O’Regan and R. Agarwal, Existence of subharmonic solutions and
homoclinic orbits for a class of high-order differential equations, Applicable Analysis,
9(7), (2011) 1169-1183.

[8] C. J. Guo, D. O’Regan and R. Agarwal, Existence and multiplicity of homoclinic
orbits of a second-order differential difference equation via variational methods,
Scientific Publications of the State University of Novi Pazarser. A: Appl. Math.
Inform and Mech, 4(1), (2012) 1-15.

[9] H. Hofer and K. Wysocki, First order elliptic systems and the existence of homoclinic
orbits in Hamiltonian systems, Math. Ann, 228, (1990) 483-503.

[10] M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order
Hamiltonian systems, J. Diff. Eqns, 219, (2005) 375-389.

[11] C. F. Kreiner and J. Zimmer, Travelling wave solutions for the discrete sine-Gordon
equation with nonlinear pair interaction, Nonlinear Anal, 70, (2009) 3146-3158.

[12] L. S. Pontryagin, R. V. Gamkreledze and E. F. Mischenko, The mathematical theory
of optimal processes, Interscience, New York, 1962.

[13] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy.
Soc. Edinburgh, 114A, (1990) 33-38.

[14] P. H. Rabinowitz, Minimax methods in critical point theory with applications to
differential equations, Amer. Math. Soc, Providence, RI, 1986.

[15] P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of
Hamiltonian systems, Math. Z, 206, (1991) 472-499.

[16] A. Rustichini, Functional differential equations of mixed type: The linear au-
tonomous case, J. Dynam. Diff. Eqns, 1, (1989) 121-143.

[17] A. Rustichini, Hopf bifurcation for functional differential equations of mixed type,
J. Dynam. Diff. Eqns, 1, (1989) 145-177.

[18] L. S. Schulman, Correlating arrows of time Some, Phys. Rev, D7, (1973) 2868-2874.

[19] L. S. Schulman, Some differential-difference equations containing both advance and
retardation, J. Math Phys, 15, (1974) 295-298.
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