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Abstract. Corresponding to the Black-Scholes stochastic differential equation, Yoshihara

(2012) introduced a difference equation based on weakly dependent stationary random

variables and proved that its solution converges almost surely to a geometric Brownian

motion with an annual drift parameter and a volatility which come from the assumption

on the random variables. In this paper, we show some further results and present their

applications by using approximations of some optimal prices in the Black-Scholes market.
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1 Introduction

In the mathematical finance model, the specific problem is finding the optimal
time to sell a stock as mentioned in [1] and [2]. In the Black-Scholes model, its
stock price Yt is given by the solution of the following stochastic differential
equation driven by a standard one-dimensional Brownian motion:

dYt = µYtdt+ κYtdBt, (1)

where µ ∈ R and κ > 0. To consider the optimal stopping problems, dis-
crete finance models are actual; however, the problem is not easy to solve for
models described by random walks. In this paper, we consider such prob-
lems using methods of strong approximations of Brownian motion. In [12]
and [13], Yoshihara considered approximations of the solution of the Black-
Scholes model based on weakly dependent stationary random variables by
the Euler-Maruyama scheme. For the discrete models, we can use properties
of Brownian motions to consider the optimal stopping problems.


