THE METHOD OF UPPER AND LOWER SOLUTIONS FOR INITIAL VALUE PROBLEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE MOMENTS OF IMPULSE

N.Giribabu^{1,*}, J. Vasundhara Devi¹, G.V.S.R.Deekshitulu²

¹GVP-Prof.V.Lakshmikantham Institute for Advanced Studies, Department of Mathematics, GVP College of Engineering, Visakhapatnam, AP, India.

²Department of Mathematics, University College of Engineering, JNTU Kakinada, AP, India.

* corresponding author, e-mail: giri.hcu.gvpcoe@gmail.com

Abstract. In this paper sufficient conditions for the existence of a solution for the initial value problem of Caputo fractional differential equations of order q, 0 < q < 1, with variable moments of impulse using the method of upper and lower solutions are established under the weakened hypothesis of C^q continuity.

Keywords. Initial value problem, Caputo fractional differential equations, impulses, variable moments, upper and lower solutions.

AMS (MOS) subject classification: 34A12,34A08,34A37, 34K07, 26A33

1 Introduction

The theory of fractional calculus has become a vast area of research with numerous applications in various fields like viscoelasticity, fluid mechanics, electrical networks, medicine etc, ([3,7,11,12,18]). The first application of fractional calculus was made by Abel(1802-1829) in the tautochronous problem. There has been a significant development in the theory of fractional calculus in recent years. The major contributions in this field are given in [3, 7, 9, 13, 17, 18, 20] and the references therein. The geometric and physical interpretation of fractional integration and fractional differentiation are given in [29] and the physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional differential equations parallel to the theory of differential equations [9].

Dynamics of many evolution process from various fields such as biology, control theory, physics can be modelled by using the theory of differential