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Abstract. This work supplements the paper [Closed form solutions of some systems of

rational difference equations in terms of Fibonacci numbers, Dynam. Cont. Dis. Ser. A,

21(6) (2014), 473–486.]. That is, an alternative proof – short and elegant – is offered in

order to explain theoretically the results presented in the paper which were established

through a mere application of the induction principle. Further results regarding the peri-

odicity of solution of the system being examined is also presented.
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1 Introduction

Difference equations are particular forms of what are known as recurrence
equations. Linear (homogeneous) types, such as the second-order recursion

Fn+1 = Fn + Fn−1, n ∈ N0 := N ∪ {0}

which generates the widely studied Fibonacci numbers

(Fn)∞0 := (Fn)∞n=0 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 . . .},

are known to be solvable through various techniques. A classical approach
in solving such type of equations is by using a discrete function λn, where
λ ∈ C \ {0} and n ∈ N0, or by employing the notion of generating functions.
In [1], several methods have been presented in solving a special linear recur-
rence equation related to Fibonacci, Pell, Jacobsthal and Balancing number
sequence. On the other hand, however, there is still no known general method


