Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 24 (2017) 121-131 Copyright ©2017 Watam Press

http://www.watam.org

SUPPLEMENT TO THE PAPER OF HALIM, TOUAFEK AND ELSAYED: PART I

Julius Fergy T. Rabago^{*} and Yacine Halim[†]

*Department of Mathematics and Computer Science College of Science University of the Philippines Baguio Baguio City 2600, Benguet, PHILIPPINES E-mail: jfrabago@gmail.com, jtrabago@upd.edu.ph

[†]Department of Mathematics and Computer Science Mila University Center Bp 26 Mila, Algeria Email: halyacine@yahoo.fr

Abstract. This work supplements the paper [Closed form solutions of some systems of rational difference equations in terms of Fibonacci numbers, *Dynam. Cont. Dis. Ser. A*, **21**(6) (2014), 473–486.]. That is, an alternative proof – short and elegant – is offered in order to explain theoretically the results presented in the paper which were established through a mere application of the induction principle. Further results regarding the periodicity of solution of the system being examined is also presented.

AMS (MOS) subject classification: Primary: 39 A 10; Secondary: 11 B 39.

1 Introduction

Difference equations are particular forms of what are known as recurrence equations. Linear (homogeneous) types, such as the second-order recursion

 $F_{n+1} = F_n + F_{n-1}, \qquad n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$

which generates the widely studied Fibonacci numbers

$$(F_n)_0^\infty := (F_n)_{n=0}^\infty = \{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 \dots\},\$$

are known to be solvable through various techniques. A classical approach in solving such type of equations is by using a discrete function λ^n , where $\lambda \in \mathbb{C} \setminus \{0\}$ and $n \in \mathbb{N}_0$, or by employing the notion of generating functions. In [1], several methods have been presented in solving a special linear recurrence equation related to Fibonacci, Pell, Jacobsthal and Balancing number sequence. On the other hand, however, there is still no known general method