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Abstract. In this paper, solvability and existence of unique solution of generalized strong-

ly nonlinear quasivariational inequality are proved based on the notion of F− monotonicity.

The associated complementarity problem is formulated. Equivalence between general-

ized strongly nonlinear quasicomplementarity problem (in short GSNQCP) and general-

ized strongly nonlinear quasivariational inequality problem (GSNQVIP) with respect to

F–monotone mapping is established under certain conditions. An iterative algorithm is

proposed to approximate the exact solution of the GSNQVIP with respect to F–monotone

mapping and its strong convergence is established. The error bounds for the approximate

solution of GSNQVIP are obtained with the help of the residue vector.
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1 Introduction

Throughout this paper we suppose that S is a closed, convex subset of real
Hilbert space X. Let F, T and A be nonlinear operators from S to X and K :
S ⇒ X. In this paper we study the following generalized strongly nonlinear
quasivariational inequality problem (in short GSNQVIP) with respect to F -
monotone mapping which consists in finding x in the constraint set K(x),
such that,

〈Tx, z − F (y − x)− x〉 ≥ 〈Ax, z − F (y − x)− x〉,∀y ∈ S, ∀z ∈ K(x), (1)

where K(x) = m(x) + S and m is a point–to–point mapping on S. Any
x ∈ K(x) which satisfies the above equation is called a solution of GSNQVI
(1). Similarly,

x ∈ K(x) : 〈Ty, z−F (y−x)−x〉 ≥ 〈Ay, z−F (y−x)−x〉,∀y ∈ S,∀z ∈ K(x)
(2)


