http://www.watam.org

COERCIVE ESTIMATES AND SEPARATION FOR PARTIAL DIFFERENTIAL OPERATORS IN HILBERT SPACES ASSOCIATED WITH THE EXISTENCE AND UNIQUENESS THEOREM

E. M. E. Zaved

Department of Mathematics Zagazig University, Zagazig, 44519, Egypt eme_zayed@yahoo.com

Abstract. In this paper, we have studied the coercive estimate and separation for the following partial differential operator

$$Au(x) = \Delta \left(a(x)\Delta u(x) \right) - b(x)\Delta u(x) + V(x)u(x)$$

for all $x \in \mathbb{R}^n$, in the Hilbert space $H = L_2(\mathbb{R}^n, H_1)$ with the operator potential $V(x) \in C^2(\mathbb{R}^n, L(H_1))$, where $a(x) \geq 0, b(x) \geq 0$ are real - valued continuous functions and $L(H_1)$ is the space of all bounded linear operators on the Hilbert space H_1 and $\Delta\Delta u(x)$ is the biharmonic differential operator, while $\Delta u(x) = \sum_{i=1}^{n} \frac{\partial^2 u(x)}{\partial x_i^2}$ is the Laplace operator in \mathbb{R}^n . Moreover, we have studied the existence and uniqueness of the solution for the non-homogeneous partial differential equation

$$Au(x) = \Delta \left(a(x) \Delta u(x) \right) - b(x) \Delta u(x) + V(x) u(x) = f(x)$$

in the Hilbert space H as an application of the separation approach, where $f(x) \in H$. Keywords. Separation, differential operator, coercive estimate, Hilbert space $H = L_2(\mathbb{R}^n, H_1)$, operator potential, existence and uniqueness theorem.

AMS (MOS) subject classification: 47F05, 58J99

1 Introduction

The concept of separation for differential operators was first introduced by Everitt and Giertz [10,11]. They have obtained the separation results for the Sturm Liouville differential operator

$$Au(x) = -u''(x) + V(x)u(x), \ x \in R,$$
(1)

in the space $L_2(R)$. They have studied the following question: What are the conditions on V(x) such that if $u(x) \in L_2(R)$ and $Au(x) \in L_2(R)$ imply that