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Abstract. In this paper, we have studied the coercive estimate and separation for the

following partial differential operator

Au(x) = ∆ (a(x)∆u(x))− b(x)∆u(x) + V (x)u(x)

for all x ∈ Rn, in the Hilbert space H = L2(Rn, H1) with the operator potential

V (x) ∈ C2(Rn, L(H1)), where a(x) ≥ 0, b(x) ≥ 0 are real - valued continuous

functions and L(H1) is the space of all bounded linear operators on the Hilbert space H1

and ∆∆u(x) is the biharmonic differential operator, while ∆u(x) =
∑n
i=1

∂2u(x)
∂x2

i
is

the Laplace operator in Rn. Moreover, we have studied the existence and uniqueness of

the solution for the non-homogeneous partial differential equation

Au(x) = ∆ (a(x)∆u(x))− b(x)∆u(x) + V (x)u(x) = f(x),

in the Hilbert space H as an application of the separation approach, where f(x) ∈ H .
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1 Introduction

The concept of separation for differential operators was first introduced by
Everitt and Giertz [10,11]. They have obtained the separation results for the
Sturm Liouville differential operator

Au(x) = −u′′(x) + V (x)u(x), x ∈ R, (1)

in the space L2(R). They have studied the following question: What are the
conditions on V (x) such that if u(x) ∈ L2(R) and Au(x) ∈ L2(R) imply that


