Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 24 (2017) 375-394 Copyright ©2017 Watam Press

http://www.watam.org

ON TWO NONLINEAR DIFFERENCE EQUATIONS

Julius Fergy T. Rabago¹ and Jerico B. Bacani²

Department of Mathematics and Computer Science College of Science University of the Philippines Baguio Baguio City 2600, Benguet, PHILIPPINES

E-mail: ¹jfrabago@gmail.com, ²jicderivative@yahoo.com

Abstract. The behavior of solutions of the following nonlinear difference equations

$$x_{n+1} = \frac{q}{p+x_n^{\nu}}$$
 and $y_{n+1} = \frac{q}{-p+y_n^{\nu}}$,

with real nonzero initial conditions x_0 and y_0 , where $p, q \in \mathbb{R}^+$ and $\nu \in \mathbb{N}$, is studied. The solution forms of these two equations when $\nu = 1$ are expressed in terms of Horadam numbers. Meanwhile, the behavior of their solutions is investigated for all integers $\nu > 1$ and several numerical examples are presented to illustrate the results exhibited. The present work generalizes those seen in [*Adv. Differ. Equ.*, **2013**:174 (2013), 7 pages].

Keywords. Riccati difference equations, Horadam sequence, fixed solutions, boundedness, prime period two solution, oscillatory solution.

AMS (MOS) subject classification: Primary: 39 A 10; Secondary: 11 B 39.

1 Introduction

An equation of the form

$$x_{n+1} = f(x_n, x_{n-1}, \dots, x_{n-k}), \quad n = 0, 1, \dots$$
(1)

where f is a continuous function that maps some set I^{k+1} into I is called a difference equation of order k + 1. The set I is usually a sub-interval of the set of real numbers \mathbb{R} , a union of its sub-intervals, or a discrete subset of \mathbb{R} such as the set of integers \mathbb{Z} . A solution of (1), uniquely determined by a prescribed set of (k + 1) initial conditions $x_{-k}, x_{-k+1}, \ldots, x_0 \in I$, is a sequence $\{x_n\}_{n=-k}^{\infty}$ that satisfies equation (1) for all $n \geq 0$. If for some least value $m \geq -k$, an initial point $(x_{-k}, x_{-k+1}, \ldots, x_0) \in I^{k+1}$ generates a solution $\{x_n\}$ with undefined value x_m , then we call the set S of all such points the singularity set, which also called the "forbidden set" in the literature [3, 9]. On the other hand, a solution of equation (1), which is constant for all $n \geq -k$, is called an equilibrium solution of (1). If $x_n = \bar{x}$ for all $n \geq -k$ is an equilibrium solution of (1), then \bar{x} is called an equilibrium point, or simply