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Abstract. The behavior of solutions of the following nonlinear difference equations

xn+1 =
q

p+ xν
n

and yn+1 =
q

−p+ yνn
,

with real nonzero initial conditions x0 and y0, where p, q ∈ R+ and ν ∈ N, is studied.

The solution forms of these two equations when ν = 1 are expressed in terms of Horadam

numbers. Meanwhile, the behavior of their solutions is investigated for all integers ν > 1

and several numerical examples are presented to illustrate the results exhibited. The

present work generalizes those seen in [Adv. Differ. Equ., 2013:174 (2013), 7 pages].
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1 Introduction

An equation of the form

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, . . . (1)

where f is a continuous function that maps some set Ik+1 into I is called
a difference equation of order k + 1. The set I is usually a sub-interval of
the set of real numbers R, a union of its sub-intervals, or a discrete subset
of R such as the set of integers Z. A solution of (1), uniquely determined
by a prescribed set of (k + 1) initial conditions x−k, x−k+1, . . . , x0 ∈ I, is a
sequence {xn}∞n=−k that satisfies equation (1) for all n ≥ 0. If for some least

value m ≥ −k, an initial point (x−k, x−k+1, . . . , x0) ∈ Ik+1 generates a solu-
tion {xn} with undefined value xm, then we call the set S of all such points
the singularity set, which also called the ‘‘forbidden set’’ in the literature
[3, 9]. On the other hand, a solution of equation (1), which is constant for all
n ≥ −k, is called an equilibium solution of (1). If xn = x̄ for all n ≥ −k is an
equilibrium solution of (1), then x̄ is called an equilibrium point, or simply


