Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 24 (2017) 395-418 Copyright ©2017 Watam Press

http://www.watam.org

BEHAVIOR OF TWO AND THREE-DIMENSIONAL SYSTEMS OF DIFFERENCE EQUATIONS IN MODELLING COMPETITIVE POPULATIONS

T. F. Ibrahim

Mathematics Department, Faculty of Science, Mansoura University, Egypt

Abstract. The main objective of this paper is to determine the closed form solutions of system of non-linear difference equations in the modelling competitive populations

$$x_{n+1} = \frac{x_{n-1}}{a_n + x_{n-1} y_n}$$
, $y_{n+1} = \frac{y_{n-1}}{a_n + y_{n-1} x_n}$, $z_{n+1} = \frac{1}{y_n z_n}$

where $\{a_n\}$ sequence with initial values x_{-1}, x_0, y_{-1}, y_0 , and z_0 such that $x_{-1}, y_0 \neq -a_0$, $x_0, y_1 \neq -a_1, y_{-1}, x_0 \neq -a_0$, and $y_0, x_1 \neq -a_1$. We study some special cases of system (1). In the Final section, we introduce numerical examples.

Keywords. solutions, difference equation, competitive, convergence, stability

AMS (MOS) subject classification: 39A10,39A11

1 Introduction

Discrete dynamical systems or Difference equations [35] is varied field which manipulate nearly every offshoot of applied and pure mathematics. The s-tudying of properties of systems of difference equations is a subject of interest in last years, see books [[1],[11],[17]]. A difference equations system of order one

$$S_{n+1} = \phi(S_n, T_n) \quad , \quad T_{n+1} = \psi(S_n, T_n) \tag{1}$$

, $n = 0, 1, ..., (S_0, T_0) \in R$, R subset of $\mathbb{R}^2, (\phi, \psi) : R \to R$, and ϕ, ψ are mapping is *competitive* if $\phi(s, t)$ is non-decreasing in s and non-increasing in t; and $\psi(s, t)$ is nondecreasing in t and nonincreasing in s [36].

Competitive systems deliberated by plentiful authors (For examples [3], [4], [8], [15], [18], [26], [36], [37], [38]).

In a modelling framework, competitive system of nonn-linear difference equations

$$s_{n+1} = \frac{s_n}{a+t_n} \& t_{n+1} = \frac{t_n}{b+s_n}$$