Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 24 (2017) 447-455 Copyright ©2017 Watam Press

http://www.watam.org

EVOLUTION SEMIGROUPS AND SPECTRAL CRITERIA FOR ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS OF DISCRETE PERIODIC EVOLUTION EQUATIONS

Akbar Zada and Muhammad Arif

Department of Mathematics University of Peshawar, Peshawar, Pakistan

Abstract. Let q be a positive integer greater or equal to 2 and let \mathcal{X} be a complex Banach space. We denote by \mathcal{Z}_+ the set of all nonnegative integers. Let $\mathcal{C}_{00}(\mathcal{Z}_+, \mathcal{X})$ is the space of all \mathcal{X} -valued bounded sequences which decays at zero and at infinity and $\mathcal{AP}_0(\mathcal{Z}_+, \mathcal{X})$ is the space of all \mathcal{X} -valued almost periodic sequences decaying at zero. Then we consider the space $\mathcal{AAP}_0(\mathcal{Z}_+, \mathcal{X})$ as the direct sum of $\mathcal{C}_{00}(\mathcal{Z}_+, \mathcal{X})$ and $\mathcal{AP}_0(\mathcal{Z}_+, \mathcal{X})$. We prove that the discrete evolution family $\mathcal{U} = \{\mathbb{U}(m, n) : m, n \in \mathcal{Z}_+, m \geq n\}$ is uniformly exponentially stable if and only if for each $z(n) \in \mathcal{AAP}_0(\mathcal{Z}_+, \mathcal{X})$ the solution of the Cauchy problem

$$X = \begin{cases} y_{n+1} = \mathcal{A}_n y_n + z(n+1), \\ y(0) = 0, \end{cases}$$
(0.1)

belongs to $\mathcal{AAP}_0(\mathcal{Z}_+, \mathcal{X})$.

Our proof uses the approach of discrete evolution semigroups.

Keywords. Discrete evolution semigroup, Discrete evolution family, Uniform exponential stability, Almost periodic sequences, Asymptotically almost periodic sequences. **AMS (MOS) subject classification:** Primary 35B35.

1 Introduction

Let us consider the following linear discrete evolution equations

$$\zeta_{n+1} = \mathcal{A}_n \zeta_n$$

and

$$\zeta_{n+1} = \mathcal{A}_n \zeta_n + f_n,$$

where $\zeta_n \in \mathcal{X}$, \mathcal{X} is a complex Banach space. The study of the difference equations $\zeta_{n+1} = \mathcal{A}_n \zeta_n$ or $\zeta_{n+1} = \mathcal{A}_n \zeta_n + f_n$ leads to the idea of discrete evolution family. For such systems the asymptotic behavior of solutions at infinity is of particular interest, the corresponding continuous systems has been a central topic discussed for such behavior from the last few decades. We refer the reader to [1,4,5,8-10,13,14,18] and references therein for more complete information on the subject.