Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 25 (2018) 53-66 Copyright ©2018 Watam Press

http://www.watam.org

A METHOD OF SLIDING WINDOW CONVERGENCE OF MEASURABLE FUNCTIONS VIA ORLICZ FUNCTION

Kuldip Raj¹ and M. Arsalan Khan²

¹School of Mathematics, Shri Mata Vaishno Devi University Katra-182320, J & K, India email:kuldipraj68@gmail.com ²Department of Civil Engineering Aligarh Muslim University Aligarh-202002 India. email:mohd.arsalan.khan@hotmail.co.uk

Abstract: In this paper, we study a new summability method known as sliding window method, for real valued measurable functions defined on $[0, \infty)$ via Orlicz function. We establish some inclusion relations and consistency theorems for the sequential methods. Furthermore, we establish a Cauchy convergence criterion.

Keywords:Orlicz function, sliding window method, statistical convergence, lacunary statistical convergence, measurable functions, Cauchy criteria.

AMS subject classification:40A35, 40C10

1. INTRODUCTION AND PRELIMINARIES

An Orlicz function Φ is a function, which is continuous, non-decreasing and convex with $\Phi(0) = 0$, $\Phi(x) > 0$ for x > 0 and $\Phi(x) \longrightarrow \infty$ as $x \longrightarrow \infty$. Let w be be the space of all complex or real sequences. Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space:

$$\ell_{\Phi} = \left\{ x \in \omega : \sum_{k=1}^{\infty} \Phi\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called as an Orlicz sequence space. The space ℓ_{Φ} is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} \Phi\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [9] that every Orlicz sequence space ℓ_{Φ} contains a subspace isomorphic to $\ell_p (p \ge 1)$. Later on, it was studied by various authors, e.g. [1], [2], [16], [10], [12]–[15], [17] and many others.

The concept of statistical convergence was introduced by Steinhaus [19] and Fast [10] and later reintroduced by Schoenberg [18] independently. In recent years, statistical convergence was discussed in the theory of Fourier analysis, ergodik theory, number theory, measure theory, trigonometric series and