Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 25 (2018) 25-51 Copyright ©2018 Watam Press

ON NEUTRAL FIRST ORDER DELAY DIFFERENTIAL EQUATIONS WITH M COMMENSURATE DELAYS

Baruch Cahlon¹ and Darrell Schmidt²

¹Department of Mathematics and Statistics Oakland University Rochester, Mi 48309-4485 ²Department of Mathematics and Statistics Oakland University Rochester, MI 48309-4485

Abstract. In this paper we derive a robust algorithmic stability test to determine asymptotic stability of the zero solution of a first order neutral differential equation of the form

$$y'(t) + \alpha y'(t - \ell \tau) + \sum_{j=0}^{m} a_j y(t - j \tau) = 0$$

where a_j , j = 0, ..., m, α and τ are constants, and $|\alpha| < 1$, $\tau > 0$, ℓ is a positive integer less than or equal to m. New necessary conditions for asymptotic stability are also obtained when $\ell = 1$ or $\ell = 2$. In addition, we obtain an algorithmic stability test. In proving our results, we make use of Pontryagin's theory for quasi-polynomials and Chebyshev polynomials.

Keywords. stability criteria, algorithmic stability test, commensurate delays, characteristic functions, Chebyshev polynomials.

1 Introduction

The aim of this paper is to derive a robust algorithmic stability test to determine asymptotic stability of the zero solution of the neutral differential equation of the form

$$y'(t) + \alpha y'(t - \ell\tau) + \sum_{j=0}^{m} a_j y(t - j\tau) = 0$$
(1)

where a_j , $j = 0, \ldots, m$, α and τ are constants, $|\alpha| < 1$, $\tau > 0$. The case $\ell = m$ was considered in our previous paper [3]. In [3], we obtained a very convenient necessary condition using Chebyshev polynomials for asymptotic stability when $\ell = m$ but only for $m \leq 9$. The case for m > 9 when $\ell = m$