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TRAJECTORY BASED MARKET MODELS

Evaluation of Minmax Price Bounds
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Abstract. The paper studies sub and super-replication price bounds for contingent claims

defined on general trajectory based market models. No prior probabilistic or topological

assumptions are placed on the trajectory space which is of unrestricted cardinality. For a

given option, there exists an interval bounding the set of possible fair prices; such interval

exists under more general conditions than the usual no-arbitrage requirement. The paper

develops a backward recursive method to evaluate the option bounds together with the

associated hedging strategies; the global minmax optimization, defining the price interval,

is reduced to a local minmax optimization via dynamic programming. Trajectory sets are

introduced for which existing probabilistic and non-probabilistic market models are nested

as particular cases. Several examples are presented, the effect of the presence of arbitrage

on the price bounds is illustrated.
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1 Introduction

In an incomplete market model, the classical (stochastic) theory shows that,
under no arbitrage assumptions, there exists an interval of fair prices. Such an
interval is given by the sub and super-replication bounds introduced first in a
diffusion setting in [12] (see [15] for a general discrete time formulation). The
super-replication price bound of an European contingent claim Z equals the
supremum of its expectation over the set of equivalent martingale measures
(with an analogous characterization for sub-replication.) For a discrete time


