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Abstract. Blood is a dense suspension of flexible red blood cells. In response to a

background flow, these cells are distributed inhomogeneouesly throughout the vessel. As

a result, material properties that are well-defined in homogeneous fluids, such as viscosity,

are no longer so, and depend upon the flow geometry along with the particle properties.

Using a simple model that accounts for the steady-state particle distribution in vessel flow,

we derive an expression for the effective viscosity of blood and the suspension flow velocity

field.
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1 Introduction

Whole blood is a concentrated suspension of (predominantly) red blood cells
- occupying > 95% vol. of the particulate, and 45% vol. of the total volume.
The mathematical modeling of blood rheology is complicated by the descrip-
tion of the microstructure that develops as particles are redistributed in the
background flow. The inhomogeneous particle distribution leads to a vari-
ation of the local suspension properties across the vessel, and consequently,
models used to describe homogeneous fluids no longer apply, even under the
most benign laminar flow conditions.

The inhomogeneous arrangement of red blood cells in flowing whole blood
results in surprising rheological behavior - the most famous of which is the
Fahraeus-Lindqvist effect [13]. When blood is forced through a narrow
glass tube, it becomes comparatively easier to maintain the flow as the tube
diameter decreases than it would be to maintain the flow of an analogous
homogeneous fluid. That is to say, the effective viscosity of blood decreases as
the tube diameter decreases. Furthermore, while homogeneous fluids display
a parabolic Poiseuille velocity distribution across the vessel (for sufficiently
low Reynolds number), blood exhibits a plateau maximum along the vessel
axis typical of plug flow. Experiments suggest that the width of this uniform-
velocity core depends upon many factors, including cell deformability, solute
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volume fraction, viscosity of the suspending medium, tube radius and the
pressure drop along the tube[14, 18].

There are several empirical models that are used to quantify these char-
acteristic flow anomalies. The constitutive equation derived by Casson [5]
to explain the non-Newtonian rheology of printer’s ink is often used in the
study of blood flow [7, 33]. In Casson’s model, the non-linear relationship
between the stress and the rate of shear contains two unknown parameters:
the yield-stress and the Casson limiting viscosity. Both parameters are no-
toriously difficult to quantify experimentally with any great consistency and
often experiments performed with different types of viscometer will arrive
at parameter values that differ by 10 − 20% [7]. A deeper problem with
the Casson approach is that uniform particle distribution is implicit in the
derivation of the model, with the non-Newtonian characteristics coming from
the aggregation of particles. Yet it is clear from the work by Chien [8] that
aggregation plays a minor role at physiological flow rates because aggregating
and non-aggregating suspensions behave identically for shear rates above 3
s−1 in a Couette viscometer.

A second class of empirical models explicitly account for the particle mi-
crostructure by viewing blood as a layered fluid [19] - with a highly viscous
core surrounded by a lubricating annulus of cell-free plasma. In these two-
fluid (or core-annular) models, the width of the lubricating layer is a free
parameter used to fit experimental data. In principle, there is no limit to
the number of layers into which the flow can be divided, with the width and
viscosity of each left free to fit with experimental data. Unfortunately, the
layered models provide no mechanism for the particle distribution, and so
are of limited predictive value.

More fundamental approaches have been developed to model suspension
flow. Microhydrodynamic models [2, 9, 20] follow the methodology of the
kinetic theory of gases, deriving macroscopic properties from the statistical
moments of underlying microscopic distributions. The formalism is unwieldy,
however, and it is difficult to incorporate the effect of bounding walls. In par-
ticular, pressure-driven pipe flow does not seem to have ever been treated in
this way [20]. Currently, suspension flows are popularly visualized by nu-
merical simulations [32, 38], although results derived by numerical methods
retain an empirical quality, with the detailed data often interpreted by scaling
arguments or described with fitting functions.

Here we shall adopt a more phenomenological approach used by others
to model the rheology of dilute emulsions [21, 24]. We describe a model
that begins with an examination of the mechanisms underlying particle mi-
gration in the background flow to provide an expression for the steady-state
effective viscosity and velocity profiles for constant and pulsatile tube flow.
We find that in the limit of vanishing Péclet number, the effective viscosity
reduces to Einstein’s relation including a correction due to flow induced cell
migration. Furthermore, the expressions derived are essentially dependent
upon the confining geometry and we conclude that the measured properties
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of a suspension are therefore dependent upon the viscometer used to make
the measurements. (For a more detailed analysis of a variety of viscometer
geometries, see [35].)

2 Mathematical model

Our chief aim is to connect the particle microstructure with the macroscopic
suspension flow. Our approach will be to describe the particle volume frac-
tion φ using mass-conservation, and the creeping flow equations for the overall
suspension velocity ~u, connecting the two disparate length scales with a phe-
nomenological constitutive relation for the local fluid stress τ(φ) (Figure 1).
Here and henceforth we refer all physical quantities to a standard cylindrical
coordinate system (r, θ, z) with the z-axis along the vessel axis.

In order to proceed, we require a suitable geometrical representation of
the red blood cells. As is well known, at rest these are biconcave disks about 8
µm is diameter and 2 µm thick. Their shape is difficult to model explicitly, al-
though some shape-based rheological models have been developed [29]. Here,
we make the simplification that in flow they behave like spherical droplets
of immiscible fluid [1, 14, 40]. We can then take advantage of the work of
Chan and Leal [6] who studied the problem of the migration of a fluid drop in
a unidirectional shear flow, under the assumption that both the suspending
fluid and the fluid inside the drop can be adequately modeled as second-order
fluids. In fact, we will need only a special case of this theory, because blood
plasma behaves like a Newtonian fluid.

2.1 Microscopic particle distribution

Consider a control volume V of fixed shape moving with the background
fluid flow. There is some volume fraction of V occupied by particles, called
φ. Invoking a conservation of mass within the control volume, the particle
volume fraction φ is governed by the conservation equation,

∂φ

∂t
= −~∇ · ~J,

where ~J is the flux of particles across the surface of the control volume. There
are two primary mechanisms driving flux across the surface – convective flux
and diffusive flux.

2.1.1 Convective flux

A neutrally buoyant hard sphere in creeping Newtonian flow will not show
any cross-stream migration [3]. Convective flux can only be realized if some
term (e.g. nonlinearity) is introduced into the creeping flow equations to
break the symmetry [26]. This is the case, for example, when the Reynolds
number is small but the nonlinear inertia terms contribute asymptotically to
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Figure 1: Connecting the macroscopic flow with the suspension mi-
crostructure. Blood is largely a suspension of red blood cells that are
arranged non-uniformly in response to a background flow. The microscopic
particle volume fraction φ is connected to the resultant suspension flow ve-
locity ~u by the local stress tensor τ(φ). The particle volume fraction φ is
governed by a advection-diffusion equation, where fu is the cross-stream mi-
gration velocity (see Eq. (2)) and D is the flow-dependent diffusion constant.
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the steady-state, or when the solvent is treated as a weakly non-Newtonian
fluid whose constitutive equation introduces the symmetry breaking non-
linearity. Most important to the present study is the convective flux arising
from drop deformability, which transforms the mathematical model into a free
boundary-value problem in which the location of the surface of the deformed
drop has to be determined as part of the solution. The resulting symmetry-
breaking condition can be exploited by means of perturbative techniques by
assuming that the spherical shape of the particle is slightly altered by hydro-
dynamic interactions with the walls and by the stretching of the surface in the
flow shear-gradient. For Poiseuille flow, with small ratio of particle-to-tube
radius, shear-gradient effects dominate and particle migration is predicted
even in unbounded flows.

Using an approach similar to Goddard and Miller’s [15] work on a de-
formable sphere in unbounded linear shear flow, Chan and Leal [6] derive
the velocity field around a deformable sphere in bounded, unidirectional
quadratic shear flow and predict that the background shear gradient and
bounding walls lead to an induced droplet migration toward the tube axis.
Their solution proceeds as an asymptotic expansion of the free-boundary
creeping flow problem in inverse powers of the particle deformability δ, with

δ =
aη0G

σ
.

Here a is the particle radius, η0 is the plasma viscosity, G is the average
shear rate across the vessel, and σ is the interfacial tension of the particle.
It follows that δ represents an estimate of the importance of viscous versus
surface tension effects, and measures the degree of nonlinearity introduced
by the free boundary conditions. The convective flux term is then given by

~Jconv = φfu(r)êr,

where fu(r) is the cross-stream migration velocity (given below by Eq. 2)
and êr is the unit vector in the radial direction.

Following Chan and Leal [6], we consider a simplified and symmetric
vessel geometry, where the down-tube length z is large compared with other
length-scales in the problem (eg. z is on the order of millimeters). As a result,
functional dependence on the down-tube distance z and the azimuthal angle
θ are dropped from the governing equations.

2.1.2 Diffusive flux

There will also be a component of the flux due to collisions between particles,
modeled by Fick’s law,

~Jdiff = −D~∇φ,

where D is the diffusion coefficient. The diffusion may be spatially dependent
for inhomogeneous concentrated suspensions, including restricted motion due
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to cage effects [10] or asymmetric collisions in the shear flow [24, 28]. Here
we assume that D is constant in space, though it may be dependent upon
averaged quantities such as the flow rate and initial particle volume fraction.

In principle the total flux ~J will contain contributions arising from ad-
ditional mechanisms, such as the electrostatic repulsion between the vessel
walls and the particle surface, sedimentation, etc., but we will only consider
the convective and diffusive contributions discussed above. The conservation
equation for the particle volume fraction then reads,

∂φ

∂t
= −~∇ ·

[
φfu(r)êr −D~∇φ

]
,

or, in cylindrical coordinates,

∂φ(r, t)

∂t
= −1

r

∂

∂r

{
r

[
φ(r, t)fu(r)−D∂φ(r, t)

∂r

]}
. (1)

Chan and Leal [6] have determined the migration velocity of an immiscible
droplet suspended in a laminar tube flow, using an asymptotic expansion
in the droplet deformability. The first term in this expansion provides an
expression for fu(r) in a 3-dimensional Poiseuille flow (cf. Eq. (6.10) in the
original article),

fu(r) = −2F [κ]
η0V

2
max

σ

( a
R

)3 ( r
R

)
, (2)

Here, Vmax is the velocity of the background flow at the axis, σ is the inter-
facial tension, a is the radius of the droplet, R is the radius of the vessel, and
F [κ] is a function of the ratio κ = η̂/η0 of the viscosity inside the droplet η̂,
and the viscosity of the suspending fluid η0,

F [κ] =
3

14

[
16 + 19κ

(2 + 3κ)2

1− κ− 2κ2

(1 + κ)2

]
+

[
(10 + 11κ)

140

8− κ+ 3κ2

(1 + κ)2(2 + 3κ)

]
.

The internal viscosity of the droplet η̂ is a measure of the resistance offered
to the motion of fluid within. The red blood cells, however, do not have a
homogeneous internal structure, and so we must ask what meaning η̂ can have
in the context of a biological cell. It is not enough to lyse the cell, and measure
the viscosity of the cell contents. The relevance of the internal viscosity to
the migration velocity comes from the development of internal circulation
patterns that dissipate energy [39]. The rugged internal architecture of the
cell provides strong resistance to flow in the interior. It seems appropriate,
then, to model the internal environment of the red blood cell as a highly
viscous fluid, taking η̂ asymptotically large (and constant) in Eq. (3), to
arrive at F [κ]→ 11/140 as κ ∝ η̂ →∞, or

fu(r) = −2
11

140

η0V
2
max

σ

( a
R

)3 ( r
R

)
. (3)



Rheology in Small Vessels 203

Because the perturbation expansion of Chan and Leal assumes κ� O(1/δ),
the limit κ→∞ must therefore be interpreted as O(1)� κ� O(1/δ), with
particle deformability δ → 0. Renormalizing time with respect to the rate of
diffusion, t̂ = D

R2 t, and the radial distance by the vessel radius, r̂ = r
R , the

particle conservation Eq. 1 reads

∂φ

∂t̂
=

1

r̂

∂

∂r̂

{
r̂

[
2εr̂φ+

∂φ

∂r̂

]}
, (4)

where the dimensionless parameter ε play the role of a Péclet number, and
characterizes the ratio of the magnitude of the convective flux to the magni-
tude of the diffusive flux,

ε =
11

140

V 2
max

σ

η0a

D

( a
R

)2

. (5)

Alternatively, the parameter ε can be thought of as a measure of the inhomo-
geneity of the steady-state particle distribution, because ε = 0 corresponds
to the diffusion dominated regime, and therefore a homogeneous steady-state
particle distribution. Consequently, we call ε the inhomogeneous Péclet num-
ber.

The steady-state solution of Eq. 4 is reached when the convective and
diffusive flux balance. Integrating the right-hand side of Eq. 4 once, and
enforcing zero flux across the axis, we arrive at the first-order ordinary dif-
ferential equation,

dφss

dr̂
= −2εr̂φss;

the steady-state particle distribution φss(r) is therefore Gaussian,

φss(r) = C0 exp
[
−εr̂2

]
.

The integration constant C0 is determined by enforcing the conservation of
the total particle mass. With the initial particle volume fraction φ0, conser-
vation of the total mass requires that∫ 1

0

r̂φ0 dr̂ =
φ0

2
=

∫ 1

0

r̂φss(r̂) dr̂, (6)

or,

C0 =
εφ0

1− e−ε
.

Equation 6 tacitly assumes that the particle packing along the axis can
be arbitrarily tight. That is not the case, and while the particle density must
certainly be less than 1, in practice complete packing is never achieved. Let
φmax be the maximum volume fraction possible, then Eq. 6 holds as long as
C0 ≤ φmax. If a completely packed core develops at the axis, extending some
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distance r̂c from the center line, the steady-state volume fraction distribution
φss(r̂) will then be piece-wise defined,

φss (r̂) =

{
φmax

φmax exp
[
−ε (r̂ − r̂c)2

] 0 ≤ r̂ ≤ r̂c
r̂c < r̂ ≤ 1

,

where now r̂c is determined by the conservation of mass,∫ 1

r̂c

r̂φ0 dr̂ = φmax

∫ 1

r̂c

r̂ exp
[
−ε(r̂ − r̂c)2

]
dr̂

=
φ0 − φmaxr̂

2
c

2
,

although the equation is transcendental and must be solved numerically.

2.2 Macroscopic suspension flow

To connect the steady-state particle distribution φss with the dynamics of
the overall flow velocity u, we postulate a generalized Newtonian constitutive
equation [31] for the fluid stress τ ,

τ(r̂) = ηφ
∂u

∂r̂
,

where ηφ is the effect of the particle volume fraction φ on the local viscosity
of the suspension. We leave the form of ηφ undefined for the moment, except
to note that in the steady-state, η will depend upon the radial distance
only: ηφ(r̂). We ignore sedimentation of the red blood cells, and assume the
suspension has uniform mass density ρ. Under these conditions, the creeping
flow equations reduce to,

~∇P = ~∇ ·
(
ηφ(r̂)

∂u

∂r̂

)
,

dP

dz
=

1

r̂

d

dr̂

{
r̂

(
ηφ(r̂)

du

dr̂

)}
.

For constant pressure-driven flow, the velocity profile is calculated by inte-
grating the preceding equation twice,

u(r̂) = −1

2

(
dP

dz

)∫ 1

r̂

r̂′

ηφ(r̂′)
dr̂′. (7)

In the vessels of the body, the driving pressure is pulsatile,

−dP
dz

= P0(1 + α sinωt).
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Assuming that in the small vessels the amplitude of the pressure pulse is
small (α � 1) so that φss(r̂) remains approximately constant during each
pulse, and assuming the Strouhal number Rω is small,

Rω =
ωR2ρ

η0
� 1,

the pulsatile steady-state velocity profile is [27],

u(r̂, t) =
P0(1 + α sinωt)

2η0

[∫ 1

r̂

η0r̂
′dr̂′

ηφ(r̂′)

]

−αP0Rω
2η0

[∫ 1

r̂

∫ r̂′

0

∫ 1

r̂′′

η2
0 r̂
′′r̂′′′ dr̂′′′dr̂′′dr̂′

r̂′ηφ(r̂′)ηφ(r̂′′′)

]
cosωt.

3 Results

The effective viscosity of blood is often reported in experiments [22]. To make
sense of this data, we must ask what is meant by the effective viscosity of a
suspension; viscosity is a bulk property of homogeneous fluids, while suspen-
sions are necessarily inhomogeneous. For example, in a capillary viscometer
the flow rate Q is measured as a function of the pressure drop ∆P along
the tube of length L . Assuming the fluid is homogeneous, and the flow is
laminar, the effective viscosity is defined by the ratio

ηeff ≡
π

8L

∆P

Q
,

and the flow rate is

Q = 2π

∫ 1

0

r̂u(r̂) dr̂. (8)

Using the velocity distribution calculated above (Eq. 7), the effective viscosity
ηeff becomes a function of the inhomogeneous Péclet number ε,

ηeff =
1

8

[∫ 1

0

r̂

{∫ 1

r̂

r̂′ dr̂′

ηφ(r̂′)

}
dr̂

]−1

(9)

Clearly the effective viscosity is a particular kind of averaged local vis-
cosity - particular to the type of viscometer being used. That is one of
the reasons for the great variety of blood viscosity values reported in liter-
ature. The effective viscosity is not an intrinsic property of a suspension,
but depends upon the underlying flow-induced microstructure and upon the
averaging implicit in the instrument used to make the measurement.

In order to present explicit plots of ηeff(ε), φss(r̂) and the resulting ve-
locity distributions, we must choose an explicit form for the local suspension
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viscosity ηφ(r̂). A common expression is [34, 4, 11, 25, 31],

ηφ(r̂) = η0

(
1− φss(r̂)

φmax

)−T
, (10)

where T is an empirical parameter characterizing the sensitivity of the vis-
cosity to particle packing. Depending upon the choices of φmax and T , Eq. 10
reproduces the popular expressions of Roscoe [34], Brinkman [4], Dienten-
fass [11], and others [25, 31]. Note that Eq. 10 is generally derived in the
context of homogeneous concentrated suspensions. In using the expression
above, we assume that at each radial position r̂, the suspension is a locally
homogeneous Newtonian fluid. The non-Newtonian behaviour of the flow is
then a result of the combined effect of each microscopic lamina on the overall
suspension velocity (Figure 2).

Despite the general form of the local viscosity given by Eq. 10, certain
features of the model can be made obvious by examining the small inhomoge-
neous Péclet number limit, ε→ 0. Substituting the general expression for the
local viscosity ηφ(r̂), Eq. 10 and the general fluid flow u(r̂) into the effective
viscosity as measured by a capillary viscometer, ηeff (Eq. 9), retaining linear
terms in the inhomogeneous Péclet number ε, we are able to calculate the
effective viscosity of a nearly-homogeneous suspension flow of initial volume
fraction φ0,

ηeff ∼ η0

(
1− φ0

φmax

)−T {
1− εT

6

(φ0/φmax)

(1− φ0/φmax)
+O(ε2)

}
,

as ε → 0. We see that the effect of the flow (i.e. ε > 0) is to reduce the
effective viscosity (shear-thinning), and that this effect is most pronounced
for suspensions near maximal packing density (φ0 ≈ φmax). In the dilute
limit φ0 → 0, we recover Einstein’s relation with a correction due to the flow

ηeff ∼ η0

[
1 +

φ0

φmax
T
{

1− ε

6

}]
,

as ε→ 0 and φ0 → 0. Furthermore, in the slow-flow limit the velocity profile
given by Eq. 7 becomes,

u(r̂) ∼ −1

4

(
dP

dz

)
(1− r̂2)

η0(1− φ0/φmax)−T

[
1 +

εT

2

φ0/φmax

(1− φ0/φmax)
r̂2 +O(ε2)

]
,

as ε→ 0. The term proportional to ε represents a correction to the parabolic
profile of homogeneous Poiseuille flow, and results in a blunt distribution
along the axis.

To make contact with experimental results we must choose an explicit
value for the maximum packing density φmax and the phenomenological ex-
ponent T . Red blood cells are quite flexible and several investigators have
reported flow of concentrated suspensions (φ0 > 0.95). It seems reasonable,
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Figure 2: Shear-thinning by particle migration. a) The inhomogeneous
Péclet number ε, Eq. 5, is a measure of the ratio of the flow-induced particle
migration to the rate of diffusion. At steady-state, the convective and diffu-
sive flux balance, resulting in a Gaussian particle distribution, with a densely
packed particulate core surrounded by a cell-depleted region. Here, in the
expression for the local viscosity ηφ(r̂) (Eq. 10), we have used φmax = 1 and
T = 1.8. b) Increasing the shear rate will increase the inhomogeneous Péclet
number ε, so a suspension of deformable particles will display shear-thinning
at low Reynolds number. In the limit of high Péclet number ε, the suspension
behaves like a core-annular flow with the particles maximally packed along
the axis surrounded by layer of pure solvent, and the effective viscosity is
constant.
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therefore, to set φmax = 1 so that the viscosity stays finite for any physically
accessible hematocrit. The exponent T is more open to interpretation. Ex-
perimental evidence suggests that T is around 2, but there is a great deal of
variation from data set to data set [23]. We will choose the value T = 1.8
to remain consistent with the work of Krieger [25] and Phillips et al. [31].
Having fully specified the form of the local viscosity, we will apply the model
in two ways. First, we shall treat the inhomogeneous Péclet number ε as
a free parameter, using the model to reconstruct complete velocity profile
information from a couple of data points, or from the experimental flow rate.
Second, using the physical interpretation of the inhomogeneous Péclet num-
ber ε afforded by Eq. 5, we shall calculate the effective interfacial tension and
the shear-dependent diffusion rate of red blood cells in tube flow.

3.1 Using the inhomogeneous Péclet number ε to fit in-
complete data

Non-invasive measurement techniques such as magnetic resonance imaging
(MRI) are being used to estimate the wall shear stress in physiological flow.
Unfortunately, the spatial resolution of these techniques is limited, and sub-
pixel data estimation is necessary, often with data near the wall fit to a
paraboloid [30]. With the present model, using ” as a free parameter, we can
reconstruct missing data and estimate the wall shear stress. Figure 3a shows
the velocity profile fitted to two data points half-way between the axis and
the wall (filled circles). These data points and those shown as open circles are
taken from the observed flow of a concentrated suspension of ghost red blood
cells through a narrow glass tube (Figure 5 of [17]). The dashed line is the
parabolic fit through the same two points. The inset shows that a parabolic
fitting function underestimates the wall shear stress (which is proportional
to u′(r)) by about 160%.

Alternatively, the inhomogeneous Péclet number ε can be determined by
matching the model to the experimentally determined flow rate, via Eq. 8;
the flow u(r̂; ε) will inherit a dependence on the Péclet number through the
viscosity ηφ(r̂). Integrating over the cross-section of the tube, we obtain
the flow-rate as a function of the inhomogeneous Péclet number ε, Q(ε).
Comparing Q(ε) to the experimental flow rate Qexp, we are able to determine
the choice of Péclet number ε that will reproduce the observed flow rate. With
ε so determined, we plot the complete flow u(r; ε), and the velocity profile is
reconstructed exactly (Figure 3b). Here again the data points (filled circles)
are taken from ghost cell flow through glass tubes (Figure 5 of [17]). Note
that the profile u(r; ε) is not fit to the data points the Péclet number ε
is simply chosen to match the spatially-averaged flow rate Q. The close
agreement between the model and data lends credence to the mathematical
form of the velocity function.
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Figure 3: Reconstruction of the flow velocity profile from incomplete
data. a) Estimating the wall shear stress: The Péclet number ε is determined
by fitting the velocity profile to two points (filled circles). The missing data is
shown as open circles. Inset: The parabolic fit (dashed) underestimates the
wall shear stress by a factor of 1.6. b) Estimating the velocity profile from
the experimental flow rate: Given the centerline velocity um, the hematocrit
φ0 and the tube radius R the Péclet number ε is chosen so that model flow
rate Q (Eq. 8) matches the experimental flow rate Qexp. Here the velocity
data is shown as filled circles. The model is able to accurately predict the
complete velocity profile (Eq. 7; solid line). All data is from [17] for ghost
red cells flowing through glass tubes.
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Figure 4: The Fahraeus-Lindqvist effect. The original data of Fahraeus
and Lindqvist [13] is shown as filled circles, with the limiting viscosity normal-
ized to one. The Péclet number ε is proportional to R−2, and the effective
viscosity ηeff , Eq. 9, calculated with ε = 0.2R−2 (R measured in mm) is
shown as a solid line.

3.2 The Fahraeus-Lindqvist effect

The definition of the inhomogeneous Péclet number ε, Eq. 5, allows the repro-
duction of the anomalous flow behavior of blood by fixing various combina-
tions of physical parameters. For example, we see that for a given experimen-
tal set-up the Péclet number is inversely-proportional to the squared vessel
radius, ε ∝ R−2. Fitting the original data of Fahraeus and Lindqvist [13]
normalized to unity, we can fix the proportionality constant,

ε =
0.2

R2
,

with the tube radiusR measured inmm. The resulting fit to the experimental
data using the effective viscosity given by Eq. 9 is shown in Figure 4.

3.3 Determining the inhomogeneous Péclet number ε
from physical data

The definition of the inhomogeneous Péclet number ε is given in terms of
physical parameters (Eq. 5) and should in principle allow rheological data
to be predicted. There is, however, some difficulty assigning meaning to the
constants Vmax and D, along with the interfacial tension σ appearing in the
definition.

The migration velocity fu, Eq. 3, was derived by Chan and Leal in terms
of the motion of a single drop in a unidirectional flow, so the background
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Figure 5: Effect of shear and particle packing on the flow-dependent
diffusion rate D(ε, φ0). The flow-dependent diffusion rate coefficient
D(ε, φ0) = D0(1 − 3.77εφ0 + 3.7ε2φ2

0), is dominated by cage effects at low
shear (ε < 0.5) where close packing restricts diffusion. As the shear rate in-
creases (ε ≥ 2), asymmetric collisions among particles enhance the diffusion
rate in concentrated suspensions.

flow will not be affected by the motion of the drop. For a concentrated
suspension, redistribution of the particles by the background flow will change
the suspension flow geometry in an essential way. In particular, the maximum
flow velocity along the axis um is no longer related to the shear gradient near
the wall via Poiseuille’s law and therefore cannot be identified as Vmax in
the migration velocity fu. Nevertheless, in the vicinity of the wall where
drop migration is dominant we can determine the parabolic contribution to
the shear gradient by taking a Taylor expansion of the suspension velocity
profile u(r̂; ε) (Eq. 7) about the vessel edge r̂ = 1, retaining quadratic terms,
to find

Vmax =
um

2ηφ(1)
∫ 1

0
r̂′dr̂′

ηφ(r̂′)

In this way, we are able to connect the centerline velocity um to the mean-field
shear gradient that an individual particle will experience near the wall, and
hence calculate the cross-stream migration velocity. With Vmax expressed in
terms of experimentally accessible quantities, the remaining parameters D
and σ are left to fully characterize the Péclet number ε.

Diffusion of an individual particle in a concentrated suspension is en-
hanced by the flow (shear-induced diffusion [24, 28]) and constrained by the
close-packing of neighboring particles (cage effects [10]). In general, these
contributions will not be uniform across the vessel, but as a first approx-
imation we consider the diffusion coefficient D as a spatially homogeneous
function of the Péclet number ε (characterizing the flow) and φ0 (characteriz-
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ing the average packing fraction). For simplicity, we assume a polynomial in
the Péclet number ε and φ0. The inhomogeneous Péclet number ε can be fit
to flow rate data (see Fig. 3), we will use the data of Glodsmith and Marlow
to determine D(ε, φ0) such that the variance in the estimate of the interfa-
cial surface tension σ is minimized across the data sets. Data is taken from
Figure 5 of [17], excluding Figure 5b (right) because the tube Reynolds num-
ber is too large. To ensure that the suspension flow is adequately modeled
by the creeping flow equations, we require that the tube Reynolds number
Re = 2umRρ/η0 be less than 0.05, Re� 0.05,where ρ is the plasma density
(ρ ≈ 1030 kg m−3). Considering a second-order polynomial fitting function,
we arrive at the flow-dependent diffusion constant

D(ε, φ0) = D0(1− 3.77εφ0 + 3.7ε2φ2
0),

where D0 is the Einstein-Stokes diffusion coefficient,

D0 =
kt

6πη0a
.

Here k is Boltzmann’s constant and t is the absolute temperature. The
form of the fitting function is justified by examining the effect of velocity
fluctuations in the particle conservation equation arising from red cell-red cell
collisions [35]. Qualitatively, the diffusion constant D(ε, φ0) behaves as one
would hope (Figure 5): As the shear-rate increases, shear-induced diffusion
overcomes cage effects, increasing the apparent rate of diffusion. With this
choice of D(ε, φ0), the resulting estimate for the interfacial surface tension σ
is,

σ = (1.2± 0.1)× 10−4N m−1,

as determined from the data of five experiments. Although within this model
the red blood cells behave like deformable droplets with interfacial tension
σ = 1.2 × 10−4N m−1, in reality the cells are biconcave disks with a cell-
membrane tension of about 10−5 N m−1 [12], an order of magnitude less than
the model estimate. It is important to note that the internal architecture
of the cell and the membrane itself lend an apparent rigidity opposing cell
deformation not found in a simple fluid drop.

Collecting the estimates for Vmax(ε, φ0) and the diffusion coefficientD(ε, φ0),
we arrive at an implicit nonlinear equation for the inhomogeneous Péclet
number ε,

ε =
11

140

V 2
max(ε, φ0)

σ

η0a

D(ε, φ0)

( a
R

)2

.

Here, the effective interfacial tension σ = 1.2 × 10−4 N m−1, the nominal
plasma viscosity is η0 = 1.1 × 10−3kg m−1s−1, and the deformed red cell
radius a = 3.5 × 10−6m. The hematocrit φ0, vessel radius R and centerline
velocity um depend upon the details of the particular system under investi-
gation. To test the many simplifications made to develop an expression for
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the flow-dependent diffusion coefficient D(ε, φ0) and fix the effective inter-
facial tension σ, we compare the theoretically predicted velocity profile to
independent experimental data not used in the fitting procedure.

The in vitro data of Goldsmith and Turrito (Figure 2 of Ref. [18]) for con-
centrated ghost cells in glass tubes is shown in Figure 6a. The experimental
parameters are φ0 = 0.52, R = 51.8µm and um = 360µm/s. This is all the
information required to estimate the velocity profile across the tube, and the
theoretical prediction fits the data well.

In vivo data is far more difficult to collect, and human data is scarce.
Nonetheless, making use of the excellent data of Sugii et al. (Figure 7d of
Ref. [37]) for blood flowing in the small arterioles of a rat, with R = 12µ
m, um = 3.1mm/s and estimated rat hematocrit φ0 = 0.45 [41], we again
find good agreement between the experimental results and the theoretical
prediction (Figure 6b).

It is important to note that no free parameters are used to improve the fit
of the model in Fig. 6. The agreement in both the ghost-cell/glass tube case
(Fig. 6a) and the red blood cell/in vivo vessel case (Fig. 6b), using the same
model with no additional fit parameters suggests that the phenomenological
approach is useful beyond the ghost cell/galss tube data used to parameterize
the model.

4 Conclusion and outlook

Applying the results of Chan and Leal [6] describing the motion of a de-
formable droplet in unidirectional creeping flow, we are able to derive a pre-
dictive model that describes the steady-state velocity profile and measured
effective viscosity of a suspension of deformable particles, with particular ap-
plication to the modeling of blood. The model behaviour is characterized
by a single parameter, ε, that acts as a Péclet number for the suspension of
deformable particles in tube flow.

Using the inhomogeneous Péclet number ε to fit the experimental flow rate
of ghost red blood cells through a glass tube, we are able to reproduce the
velocity field exactly (Fig. 3). With an empirical choice of the diffusion rate
coefficient, chosen to minimize the value of the apparent interfacial tension σ
of the model droplets as compared to the data of Goldsmith and Marlow [17],
we arrive at a quantitative, predictive model for blood rheology that requires
only the hematocrit φ0, the vessel radius R and the centerline velocity um to
calculate the velocity field and effective viscosity of the suspension flow.

The present model is derived under the assumption of vanishingly small
Reynolds number Re = 2umRρ/η0 � 0.05, though for more rapid flow,
inertial effects become important. Macroscopically, these effects appear as
an increase in the effective viscosity and a decrease in the blunting of the
velocity profile near the vessel axis [16]. Microscopically, in keeping with the
observations of Segre and Silberberg [36], the particles will move away from
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Figure 6: Parameterless-fit of the model to experimental data. a)
The model prediction is shown along with the in vitro data for the flow of
ghost red blood cells through glass tubes [18]. b) The data is for the flow of
rat’s blood through an arteriole [37]. The hematocrit is not reported, but we
estimate φ0 = 0.45 [41].
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the axis. To leading order, the effects of inertia and particle deformation
are additive in the migration velocity [26] and including both mechanisms in
the convective flux would extend the range of the model to larger Reynolds
number flow.
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