Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 28 (2021) 145-152 Copyright ©2021 Watam Press

http://www.watam.org

ON A MATHEMATICAL MODEL OF THERMAL EXPLOSION WITH MULTIPLE PARAMETERS AND NONLINEAR BOUNDARY CONDITIONS

S.H. Rasouli

Department of Mathematics Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol, Iran

Abstract. This paper deals with the existence and multiplicity of positive solutions for a mathematical model of thermal explosion with multiple parameters and nonlinear boundary conditions. The arguments rely on the method of sub– and supersolutions.

Keywords. Positive solutions; Thermal explosion; Sub-supersolutions.

AMS (MOS) subject classification:35J55, 35J65.

1 Introduction

A classical problem in combustion theory is a model of thermal explosion which occurs due to a spontaneous ignition in a rapid combustion process. In this paper, we consider a model involving a nonlinear boundary heat loss which is not a very typical one in classical combustion theory, but is relevant to some more applications (see [6, 12, 14, 7] for details). The model reads as:

$$\begin{cases} \theta(t) - \Delta \theta = \alpha_1 f(\eta) + \beta_1 h(\theta), & (t, x) \in (0, \infty) \times \Omega, \\ \eta(t) - \Delta \eta = \alpha_2 g(\theta) + \beta_2 k(\eta), & (t, x) \in (0, \infty) \times \Omega, \\ \mathbf{n}.\nabla \theta + a(\theta)\theta = 0, & (t, x) \in (0, \infty) \times \partial \Omega, \\ \mathbf{n}.\nabla \eta + b(\eta)\eta = 0, & (t, x) \in (0, \infty) \times \partial \Omega, \\ \theta(0, x) = 0 = \eta(0, x). \end{cases}$$
(1)

Here θ, η are the appropriately scaled temperature in a bounded smooth domain $\Omega \subset \mathbb{R}^N$, $N \geq 1$, and f, g, h, k are the normalized reactions rate. We assume that f, g, h, k satisfying the following assumptions:

(H1) $f, g, h, k \in C^1(0, \infty) \cap C[0, \infty)$ are strictly increasing functions such that $f(0) > 0, g(0) > 0, h(0) \ge 0, k(0) \ge 0$ and $\lim_{x\to\infty} g(x) = \infty$.

(H2) $\lim_{s\to\infty} \frac{f(Ag(s))}{s} = 0$, for all A > 0.

and