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Abstract. In this paper we present coincidence results in a general setting for a variety

of set valued maps. Our argument relies on continuous selections and fixed point theory

in the literature.
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1 Introduction

In this paper we present a variety of new collectively coincidence point re-
sults for set valued maps. The class of maps considered include Kakutani
maps, maps admissible with respect to Gorniewicz and set valued maps with
continuous selections (see [1, 3, 4, 7, 8, 10] and the references therein). Using
our new coincidence type theorems we establish some new maximal element
type results for families of majorized type maps (see [12, 13, 14] and the
references therein).

Now we describe the maps considered in this paper. Let H be the C̆ech
homology functor with compact carriers and coefficients in the field of rational
numbers K from the category of Hausdorff topological spaces and continuous
maps to the category of graded vector spaces and linear maps of degree zero.
Thus H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded

vector space, Hq(X) being the q–dimensional C̆ech homology group with
compact carriers of X. For a continuous map f : X → X, H(f) is the
induced linear map f? = {f? q} where f? q : Hq(X)→ Hq(X). A space X is
acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single
valued map p : Γ → X is called a Vietoris map (written p : Γ ⇒ X) if the
following two conditions are satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e. p is closed and for every x ∈ X the set p−1(x)
is nonempty and compact.


